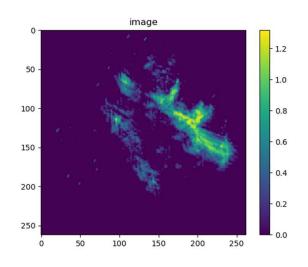
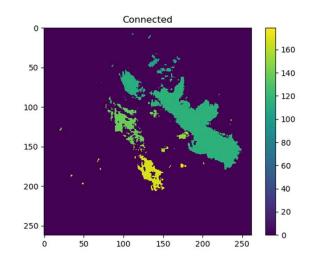


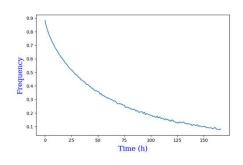
Rainfall


- Observation need treatment
 - Interpolation
 - Correction (Radar)
- Design scenarios
 - Temporal behavior (IDF AIDF curves)
 - Full timeseries (Extremes and long series)
- Space time series
- Climate change rainfall
 - Meteorological models produce rainfall
 - Consistent (physics)
 - Does not look like rain (bias, dependence problems)
- Application of WEATHER GENERATORS


Properties of rainfall

- Scale dependent
- Zero inflated

Radar rainfall



What to do with the zeros?
Throw them away?

Rainfall

- Considering zeros
 - Changes the variograms
 - Lower variogram sill
 - Larger range
 - Different anisotropy
 - Do not throw away zeros to investigate rainfall occurrence patterns
 - · Indicator variograms
 - Throw zeros except bounding zeros for variogram calculations for amount estimations
 - Bring these togather
 - Truncated Gaussian unites both but is usually false (also in time)

Time series: rainfall occurrence

Indicator transformation:

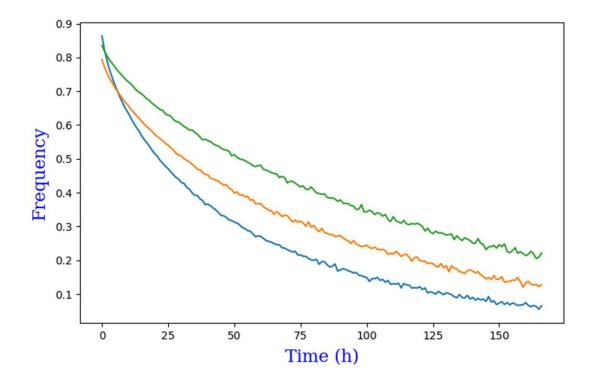
The indicator series has the same zero frequency on all scales

 $0.0\ 0.0\ 1.2\ 3.2\ 1.1\ 0.3\ 0.0\ 0.0\ \dots\ 0.0\ 0.0\ 0.9\ 0.6\ 3.3\ 0.0\ 0.0\ \dots$

0 0 1 1 1 1 0 0 ... 0 0 1 1 1 0 0 ...

Simulate the 0-1 sequence so that it fits all scales (zero probabilities)

for example MCMC


Remove the far zeros:

x 0 1 1 1 1 0 x... x 0 1 1 1 0 x ...

(at least 70 % of the data are fixed and removed)

Populate the events

Rainfall occurrence iterative simulation

Rainfall amounts

For individual events:

x 0 1 1 1 1 0 x

Populate the events according to internal structure reflecting 0-s

FFT-MA

Can be extended to multisite

Keep indicator cross-correlations (multiple lags)

Can reflect annual cycles

Can be conditioned on CPs

Summary

Precipitation – zero inflated for "short time scales"

Separate occurence process and quantities

Point observations – remove "far" zeros

Space time:

Event objects (3D)

Event characterisation dependent population

Danke!

András Bárdossy

e-mail :bardossy@iws.uni-stuttgart.de

phone +49 (0) 711 685--64663

fax +49 (0) 711 685--64681

Universität Stuttgart Institute for Modelling Hydraulic and Environmental Systems

Pfaffenwaldring 61, D-70569 Stuttgart, Germany