

Automatic Interferogram Selection for SBAS-InSAR Based on Deep Convolutional Neural Networks

Yufang He 1,2, Guangzong Zhang 1,*, Hermann Kaufmann 3 and Guochang Xu 1

¹Institute of Space Science and Applied Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China;

²GFZ German Research Centre for Geosciences, Department of Geodesy, Section of Remote Sensing, Potsdam 14473, Germany;

³School of Space Science and Physics, Shandong University at Weihai, Weihai 264209, China.

InSAR

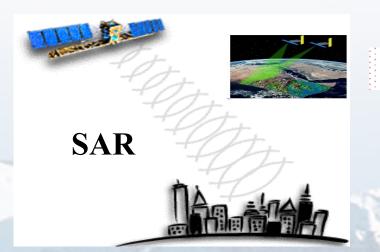
1 Background

Interferometric synthetic aperture radar

High spatial resolution, high efficiency

Work day and night

Large-scale surface deformation monitoring


Millimeter-level monitoring accuracy

D_InSAR

TS InSAR

Geological Hazard Monitoring

Classical Method

SBAS_InSAR

Small baseline subset (SBAS) InSAR:

Parallel SBAS (P-SBAS)

Multidimensional SBAS (M-SBAS)

New SBAS (N-SBAS)

Pixel-offset SBAS.

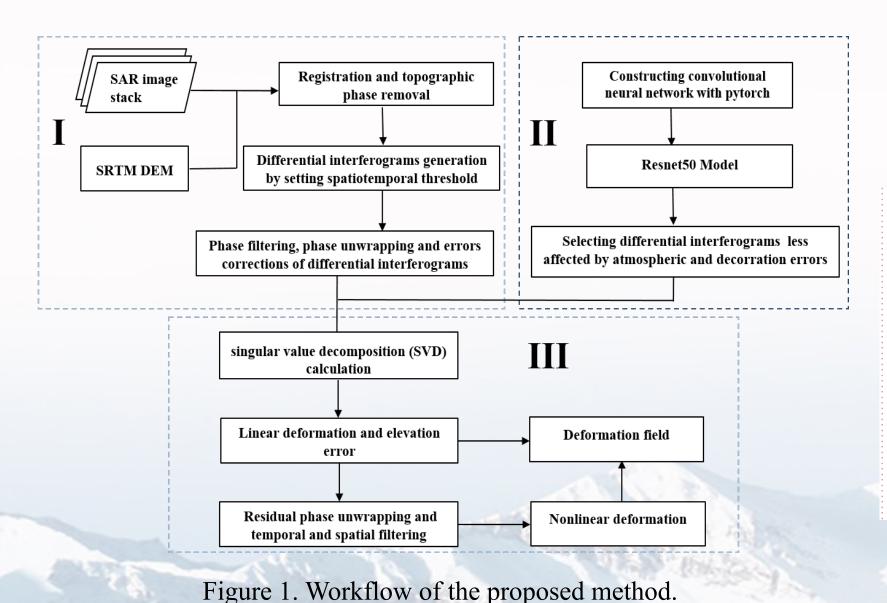
1 Background

The key operation for SBAS_InSAR: Selection of high-quality interferograms

Methods

- □ The traditional manual method, large amount of human-computer interaction;
- ☐ The optimal temporal and spatial baseline thresholds method, low-quality interferograms may be mistaken;
- □ Triangulation reduction and a simulated annealing (SA) searching strategy, long time of operation;
- □ The graph theory (GT), not suitable for all SAR images with severe atmospheric distortions.
- Don't meet requirements of automation and high efficiency engineering application for the big data era. We need automated and effective method.

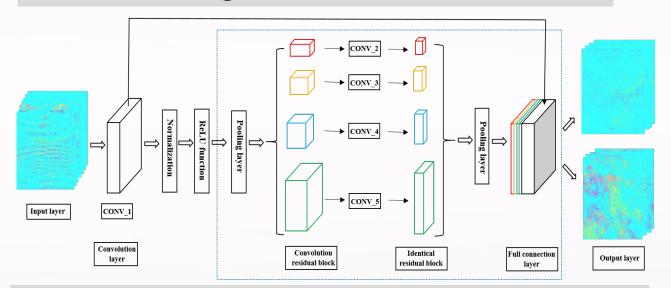
Deep Convolutional Neural Networks (DCNN) method


ResNet50 Model

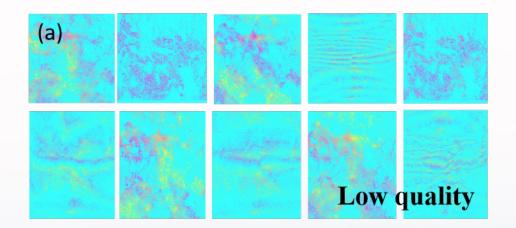
2 Methods and contents

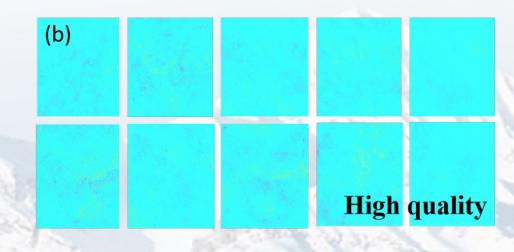
Three Parts

- (I) The calculation of differential interferograms of sequential deformations from SAR images.
- (II) The automatic extraction of high-quality interferograms by the ResNet50–DCNN model.
- (III) The estimation of deformation field.



2 Methods and contents


The structural design of the ResNet50 model



The convolution kernel sizes and output sizes of the model

Layer Name	Layer Name Output Size	
CONV_1	1/2	7×7 , 64, stride = 2
		Γ1 × 1, 64]
CONV_2	1/4	3×3 , 64 $\times 3$
		$\lfloor 1 \times 1, 256 \rfloor$
		ן × 1, 128 ן
CONV_3	1/8	3×3 , 128×4
		$\lfloor 1 \times 1, 512 \rfloor$
		[1 × 1, 256]
CONV_4	1/16	3×3 , 256×6
		$[1 \times 1, 1024]$
		$[1 \times 1, 512]$
CONV_5	1/32	3×3 , 512 $\times 3$
		$[1 \times 1, 2048]$
ARRA 271		Average pooling,
Classifier	1×1	Fc (Full connection), 100
		Softmax

Datasets of unwrapped interferograms (Above 3000 images)

3 Experiments

3.1 Simulation Experiment

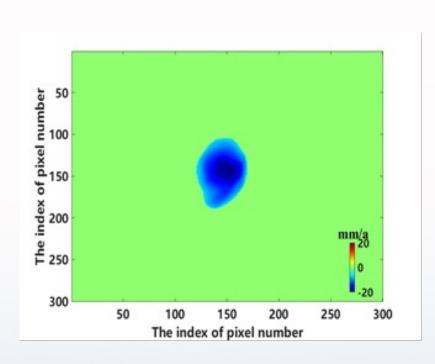


Figure 2. The simulated subsidence funnel velocity with 25 mm per year

Simulated interferograms Parameters

Size of each image	The subsidence funnel velocity	Simulated interferogra m number	low quality interferograms number	High quality interferogra ms number
300*300	25 mm/y	222	70	152

ResNet50 model Parameters

Number of training cycles	Size of input images(RGB)	Training learning rate	The activation function
200	128 × 128	0.001	Rectified Linear Units (ReLu)

Helmholtz-Zentrum

3.1 Simulation Experiment

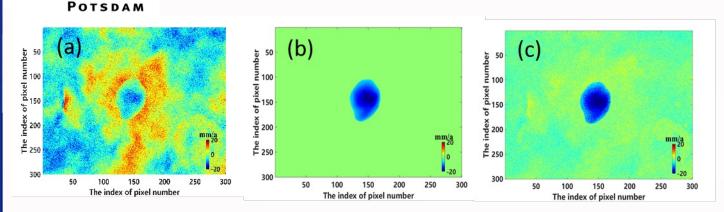


Figure 3. The annual deformation rate based on (a) the spatiotemporal baseline threshold method (b) the manual method (c) the ResNet 50–DCNN method.

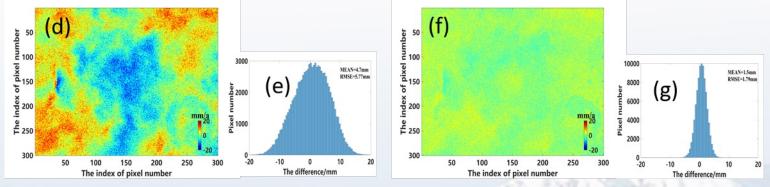


Figure 4. (d) Difference between (a,b). (e) Histogram of (d). (f) Differences between (a,c). (g) Histogram of (f)

The accuracy is above 90% for the simulation experiment.

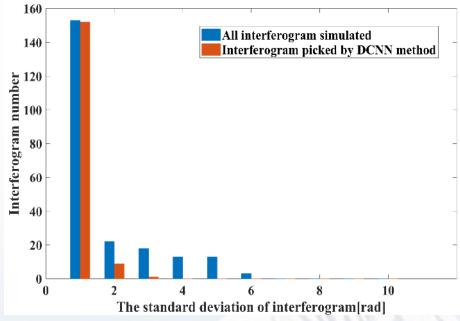


Figure 5. Histogram distribution for standard deviations of the interferogram phase based on interferograms selected by the ResNet 50–DCNN method and those originally simulated.

POTSDAM

3.2 Real Experiment

Research Area and datasets

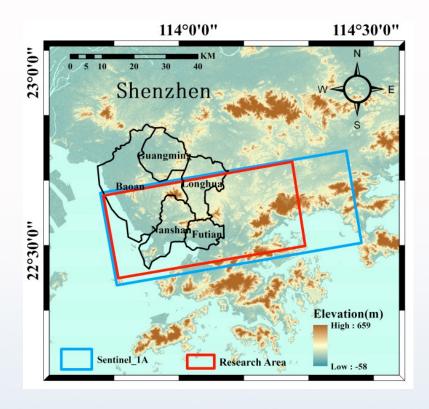


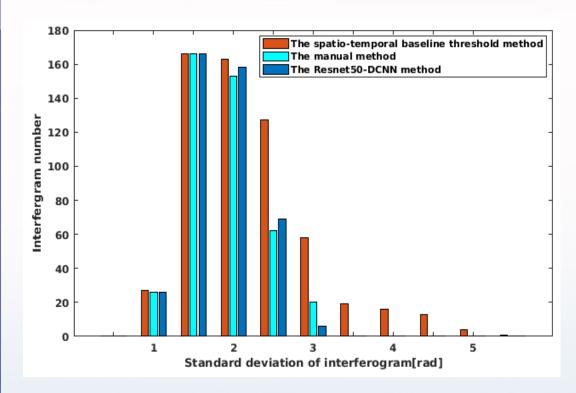
Figure 2. Overview of the research area and coverage of SAR datasets

SBAS-InSAR Parameters

Sentinel-1	The time	The space	Origimal
images	baseline	baseline	interferogram
number	threshold	threshold	number
81	75D	150m	593

ResNet50 model Parameters

Number of training cycles	Size of input images(RGB)	Training learning rate	The activation function
300	256×256	0.001	Rectified Linear Units (ReLu)


Helmholtz-Zentrum
PotsDam

3.2 Real Experiment

Results

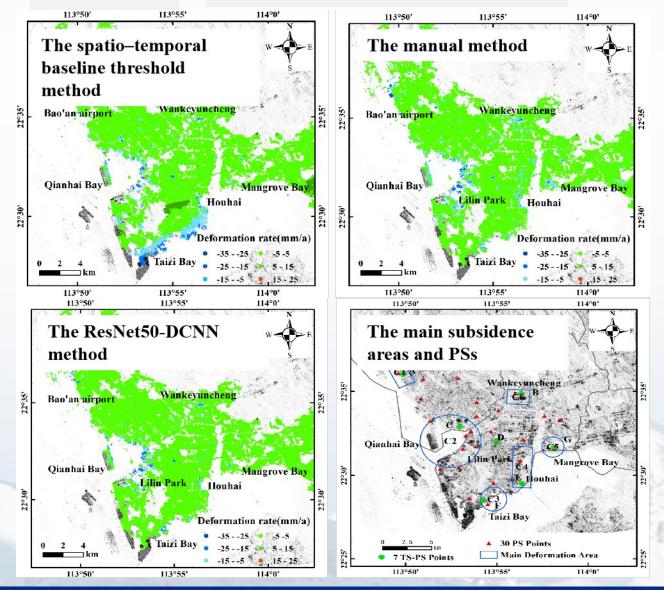
The standard deviations of the interferograms are used to analyze the performance of the proposed method.

	The spatio—Temporal Baseline Threshold Method	The Manual Method	The ResNet50– DCNN Method
Number of interferogram	593	411	425
Standard deviation of interferogram phase/rad	2.1054	1.6328	1.6406

Figure 6. The distribution of the standard deviations of the interferogram phase based on the three different methods displayed in form of a histogram.

Table 1. Derived number and standard deviations of the interferogram phase obtained by the three methods.

POTSDAM



3.2 Real Experiment

Results

The vertical deformation rates

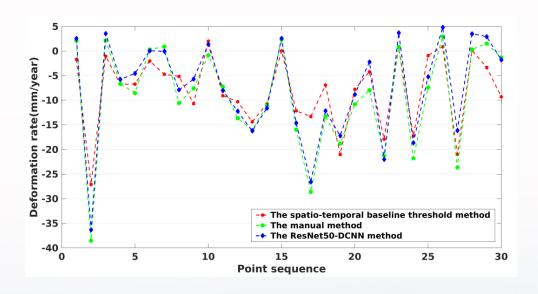


Figure 7. Annual average deformation rate of 30 randomly selected PS points obtained by the three investigated methods.

The location of subsidence areas and deformation values reflect the reliability of the proposed method.

Ugeneral 2022 4. Conclusion and discussion

- The quantity of high quality interferograms extracted by the ResNet50–DCNN method is above 90% for the simulation experiment and above 87% concerning the real data experiment, which reflects the accuracy and reliability of the proposed method.
- A comparison of the overall surface subsidence rates and the deformation information of **local PS points reveals little difference** between the land subsidence rates obtained by the ResNet50–DCNN method and the actual simulations or the manual method.

- The proposed advanced method **provides an automatized and fast interferogram selection process** for high quality data, which contributes significantly to the application of SBAS-InSAR engineering.
- For future research, we will expand the training samples and study DCNN models to further improve the general accuracy for a wider applicability of this method.

Thank you!

Yufang He

¹Navigation and Remote Sensing Laboratory, Harbin Institute of Technology (Shenzhen), Shenzhen, China

²GFZ German Research Centre for Geosciences, Department of Geodesy, Section of Remote Sensing, 14473 Potsdam, Germany.