

Effect of spatially distributed radar-gauge rainfall products on simulated urban flows

Edwin Echeverri-Salazar^{2*}, Bora Shehu¹, Alexander Verworn², Markus Wallner^{2,3}

Session HS7.6 – Precipitation and urban hydrology May 26th, 2022, Vienna

¹Institute of Hydrology and Water Resources Management, Leibniz Universität Hannover, Hannover, Germany,

² bpi Hannover – Beratende Ingenieure, Hannover, Germany, ³ Ostfalia Hochschule, Wolfenbüttel, Germany

Urban hydrology and radars

- Urban hydrological studies require a fine temporal and spatial resolution.
- Dense rainfall gauge (RG) networks are rarely available.

Fig. 1: Spatial and temporal scales of hydrological processes in urban areas

Source: from (Salvadore et al., 2015)

- Weather radars provide high spatial and temporal resolution, RG high accuracy for a (small) area.
- Several merging radar-gauge methods in the literature, mainly validated with rain gauges few with flow simulation (Ochoa-Rodriguez et al., 2019).

Fig. 2: Low rain gauge density in Hildesheim, Lower Saxony, Germany

Study area

- Area of 133 ha without operational structures
- Two monitoring sites for the period **February 2021 until October 2021** (each **1-5 min**).
- Twenty-two (22) events with duration ranging 2-14-hours
- Calibration/Validation -> 7/22 events

Fig. 3: Monitoring sites in the Study area

Methods

Rainfall performance

- TSS is the best for capturing the event occurrence but not their magnitude
- Merging methods performance could be limited due to the low density of rain gauges

TSS: Temporal and spatial smoothing, CM: Cond. Merging, FB: Field Bias, KED: Kriging with External Drift

Conclusions and outlook

- Merging methods and flow simulations are strongly affected by the density of rain gauges (KED is the most influenced, CM is more robust).
- Only the smoothed radar data delivered better simulation results than one gauge station in the vicinity.
- The inclusion of the RG in interpolation improved considerably the merging results, which might require adjustments in the model parameterization (new calibration).

Thank you for your time and interest!

This work was possible thanks to:

TSS: Temporal and spatial smoothing, CM: Cond. Merging, FB: Field Bias, KED: Kriging with External Drift

Not shifted, with RG

Shifted, without RG

at Airport

TSS: Temporal and spatial smoothing, CM: Cond. Merging, FB: Field Bias, KED: Kriging with External Drift