Chromium in garnet as tracer of the metamorphic evolution of pyroxenite from the Pohorje Mountains, Slovenian Eastern Alps

Botao Li

(libotao123@hotmail.com)

Hans-Joachim Massonne

(h-j.massonne@imi.uni-stuttgart.de)

School of Earth Sciences, China University of Geosciences (Wuhan)

1. Motivations

 Motivations to study Cr in garnet in order to decipher the P-T path of clinopyroxenite (gabbroic cumulate) in the Pohorje Mts.

(1) Reported weak garnet zonation (Ca, Mn, Fe²⁺, Mg) in metabasic rocks in Pohorje

(2) Reported Cr-rich gabbroic cumulates in Pohorje

Hauzenberger et al. (2016). Genesis of chromium-rich kyanite in eclogite-facies **Cr-spinel-bearing gabbroic cumulates**, **Pohorje Massif**, Eastern Alps. Am. Mineralogist 101, 448-460.

• Chromium in garnet may belong to the group of slowly diffusing cations.

(e.g., Cr zonation in garnet in peridotite, Erzgebirge, peak T at ca. 1000 °C)

Massonne & O'Brien, 2003

1. Motivations

• (3) The only reported UHP area in the Eastern Alps is in the Pohorje Mts., but there is a debate on the true occurrence of UHP metamorphism.

2. Geological setting

Sample location

Geological map modified after Kirst et al., 2021

	Age	Method	lithology	reference
Eo-Alpine HP/UHP event	106-84 Ma	U– <u>Pb</u> Zircon Sm– <u>Nd</u> Gt Lu–Hf Gt	eclogite metapelite eclogite	Janák et al., 2009 Miller et al., 2005 Miller et al., 2005 Thöni et al., 2008
		U-Th-Pb Mnz U-Th-Pb Mnz	metapelite metapelite	Krenn et al., 2009 Li et al., 2021
Eocene	ca. 48			
HP event	Ma	U-Th-Pb Mnz	metapelite	Li et al., 2021

reported Eo-Alpine P-T paths

recently reported Eocene P-T path

3. Petrography and mineral chemistry (sample 18Slo35a)

Major (in matrix):
Cp (33-35 vol.%,
high Cr)
Gt (32-34 vol.%)
Am (17-19 vol.%
high Cr)
Zs (13-15 vol.%,
high Cr)

Am = amphibole Cp = clinopyroxene Gt = garnet Zs = (clino)zoisite

Ky = kyanite St = staurolite

Rt = rutile

PI = plagioclase

Accessories: Ky (only in Gt), St (only in Gt), Rt, Pl (secondary in matrix), Sulfides (in matrix)

3. Petrography and mineral chemistry

Gt zonation

high contents

Am = amphibole
Cp = clinopyroxene
Gt = garnet
Zs = (clino)zoisite
Ky = Kyanite

low Cr----Inclusions in Gt1(core): Am, St, Ky, Zs (e, f, h, i) high Cr----Inclusion in Gt2 (mantle): Cp (g)

Summary:

• Two generations of mineral assemblage

Stage I (low Cr): Gt1, Am, St, Ky, Zs

Stage II (high Cr): Gt2, Cp

Assumption: Cr-rich spinel → high Cr minerals

4. Pseudosection modelling

PERPLE X

- •Thermodynamic data set: Holland & Powell (1998, updated 2002)
- •Solution models: GlTrTsPg, Carp, Chl(HP), Ctd(HP), Ep(HP), IlGkPy, Mica(M), Omph(HP), Opx(HP), feldspar, St(HP)

Pure phases: magnetite, Zs, Rt, Tt, Al-silicates, Lw, Tc

•The used bulk-rock composition(wt%)

SiO ₂	TiO ₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	H ₂ O	O ₂	SUM
45.4	0.1	16.6	4.4	0.09	15	14	0.94	4	0.1	100

5. P-T evolution

Summary:

The obtained two HP events support the previous reported two HP events

6. Conclusions

Metamorphism in the Eastern Alps:

The obtained **two HP events** in Gt pyroxenite **support** the finding by Li et al. (2021) that two HP events (**Eo-Alpine** + **Palaeogene**) also occurred in the southeasternmost part of the Eastern Alps.

Benefit of chromium in garnet from metabasite:

The distribution of Cr in garnet and associated minerals (Cr-rich/poor minerals) can help to better understand the metamorphic evolution.

Thank you for your attention!