

Session HS 5.6: Impacts of land use and land cover changes on water resources management and water-related ecosystem services

Spatial variability assessment of groundwater quality dispersion with reference to land-use indices

*Shipra Tyagi and Kiranmay Sarma

*PhD Scholar (UGC Senior Research Fellow), Earth Sciences Lab (ARL-009)

UNIVERSITY SCHOOL OF ENVIRONMENT MANAGEMENT,
GURU GOBIND SINGH INDRAPRASTHA UNIVERSITY, SECTOR-16 C, DWARKA, NEW DELHI-110078, INDIA

Kindly contact for any information:

Latin

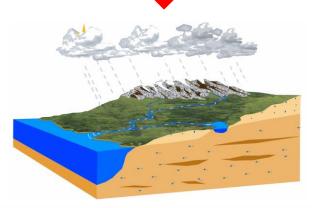
America

America

Europe

Land Use and Groundwaters

According to United Nations, about 66% of the world population projected to live in urban areas by 2050.



Oceania

Asia

Source: United Nations

Worldwide

About half of the world's megacities are groundwater dependent (Wolf et al. 2006)

URBAN AQUIFERS

Rapid Growth of Cities & Groundwater Pollution

Effects on Natural Recharge of Aquifers due to increased pavements and concrete causing impermeabilization and ground sealing effect might contribute to decrease in groundwater recharge

Due to leakage from drainage and, industrial wastage and septic effluents

URBAN WATER CYCLE

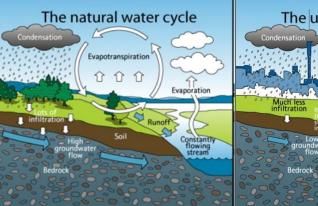


Image Source: Auckland Council

Under Studied & Under Protected

Land Use based impacts on Groundwater Quality

Link between land use and groundwater has long been recognized but has not been widely translated into integrated policies and practices...

Population growth

Increasing and changing food demands

Industrial use

- > Land use mismanagement leads to degradation of groundwater quality which depends on the type of land use.
- > Overlying landscapes influence the quality of groundwater by discharging excess nutrient and toxic chemicals that influence the groundwater quality to a greater extent.
- > Sharply focused land-use management measures can produce significant groundwater quality and quantity benefits at relatively modest cost and improving integrated governance will be crucial to ensuring an acceptable harvest of both food and groundwater from the available land.

Potential Sources of Groundwater Contamination

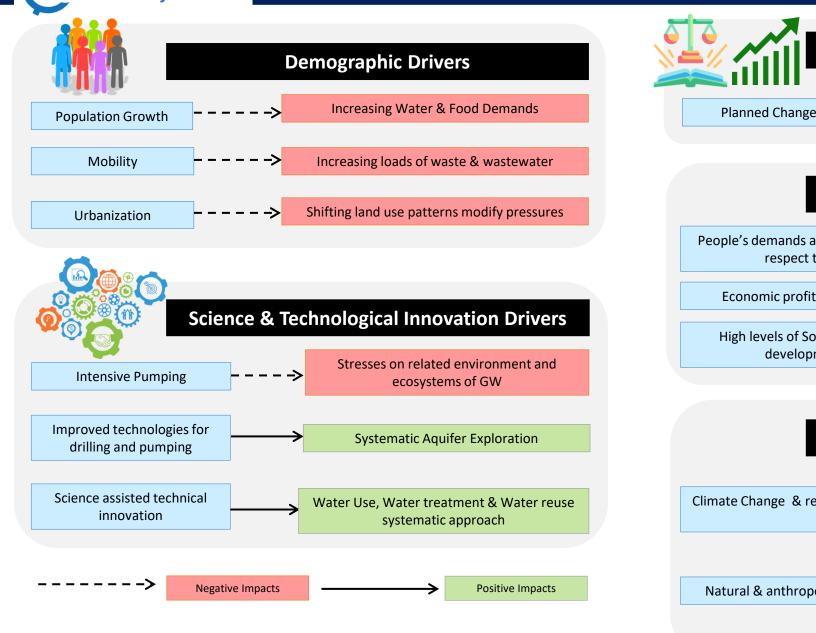
NATURAL SOURCES

Geo-genic through the geological processes occurring in the earth's crust, and Rock-water interaction

ANTHROPOGENIC SOURCES

Industrial effluents discharges; Urban discharges; Landfills and Septic tanks; Agricultural pesticides and fertilizers runoff activities

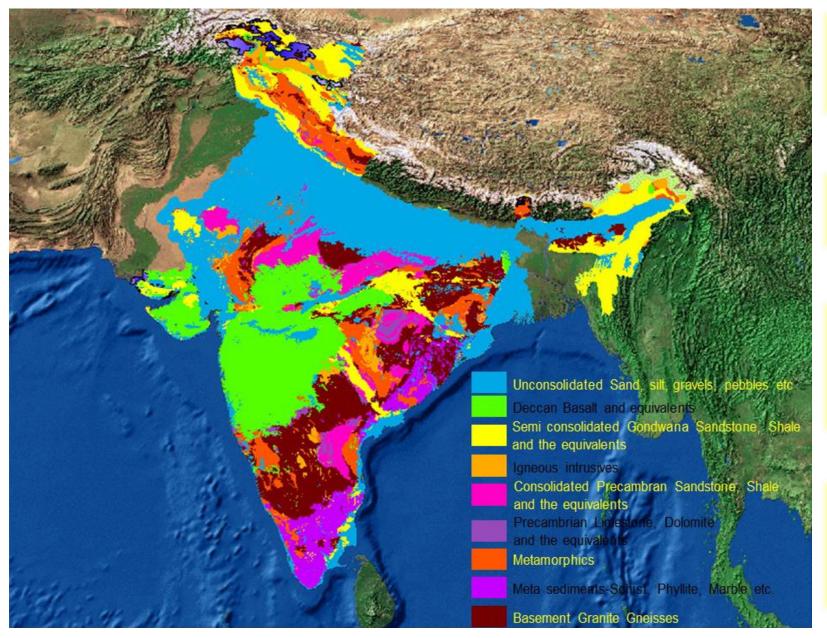
Image Source: Bodrud-Doza, Md., et al. (2016)


Potential Effects on Urban Groundwater System

Primary Impact Secondary Constraint or threat Aguifer over Abstraction Public/Private WATER SUPPLY Decline in well yield Saline intrusion Induced contamination Infrastructure development and **ENGINEERING** Land subsidence maintenance **Excessive Infiltration** WATER SUPPLY Public/Private Infrastructure development and Rising water table **ENGINEERING** Aggressive chemicals maintenance Liquid effluent, sludges and solid WASTE DISPOSAL wastes **Excessive Contaminant Load** Public/Private WATER SUPPLY Water potability problems Quality nuisance effects Liquid effluent, sludges and solid Well clogging WASTE DISPOSAL wastes

Source: Foster et al. 1998

Drivers' categories that changes the processes in Groundwater Systems



nature

Data Source: Margat and Gun (2013)

Groundwater Scenario in India

By 2025, India's annual water demand will be 1050 km³ which would be mainly for the production of food grains for the increased volume of population (Singhal, 2002).

More than 60% of irrigated agriculture and 85% of drinking water supplies are dependent on groundwater.

Among 15 nations, India is the largest user of groundwater in the world and has largest annual groundwater extraction estimated (2010) of about 251 km³/year (Margat, J. et al., 2013).

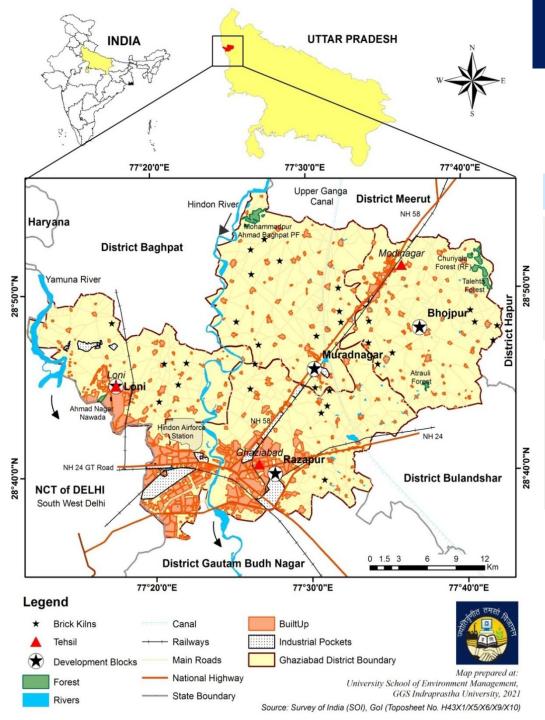
Extraction rate of groundwater in **Delhi**, **Haryana**, **Punjab and Rajasthan** is greater than the rate of replenishment, i.e., groundwater development is more than 100 percent.

Groundwater Availability in India

PARAMETER	Unit (Billion cubic meter/year)
Annual Water Availability	1869
Usable Water	1123
Surface Water	690
Ground Water	433

Annual Groundwater Extraction in India

AGRICULTURE (Irrigation): 89%


DOMESTIC USE: 9%

INDUSTRY: 2%

50% of urban water and 85% of rural domestic water requirements are fulfilled by ground water.

EGU General Assembly 2022

STUDY AREA

Ghaziabad: GATEWAY OF UTTAR PRADESH, INDIA

One of the fastest growing suburban districts of western Uttar Pradesh situated in the middle of the Ganga-Yamuna doab

Landuse scenario in Ghaziabad district, western Uttar Pradesh

 Densely populated due to which residential and commercial projects have been constructed the building societies and multi-storied apartments into manifolds such as Indirapuram, Vaishali, Kaushambi, Vasundhara, Raj Nagar Extension, Crossing Republik, and Rajendra Nagar.

Residential

- Farming cultivations are still practiced predominantly in northern and northeastern parts. About 56.8% of the population is still engaged in agricultural practices for varied cropping seasons such as kharif, rabi and zaid, with major crops productivity of sugarcane, wheat and rice.
- Net cultivated area accounts for 53129 hectares with 92 percent of irrigation potential and 159 percent of cropping intensity (Krishi Vigyan Kendra, Ghaziabad).

- Major industrial pockets are Sahibabad industrial estate, Kavi Nagar industrial area,
 Bulandshahr and Meerut industrial road etc. and small units are located in Loni blocks.
- Besides 14,160 small scale industries, 145 are medium and heavy scale production industries.
- About 73% of the heavy based industries includes: Food, sugar and jiggery, soft drinks and tobacco, cotton textiles, Paper and paper products & printings, Rubber plastic and petroleum, chemicals and chemical products, Metal products, machinery tools and parts, electric & transport equipment etc.

Groundwater Resource Availability and Extraction (in Uttar Pradesh state and Ghaziabad district, 2017)

Ground Water Recharge

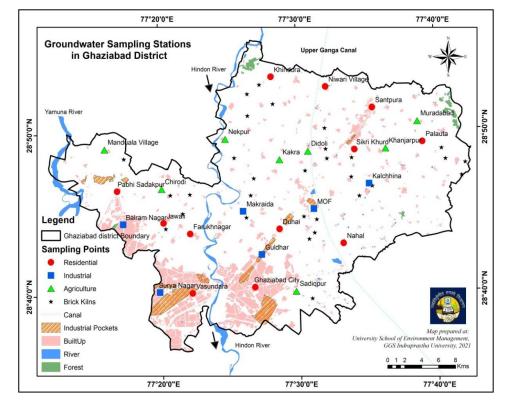
Current Annual Ground Water Extraction

		Monsoon S	Season	Non-m Sea	onsoon son	Total Annual Ground	Total Natural	Annual Extractable Ground		Domostic 9		Annual GW Allocation for Domestic	Net Ground Water Availability	Stage of Ground Water
		Recharge from rainfall	Recharge from other sources	Recharge from rainfall	Recharge from other sources	Water Recharge	Discharges	Water Resources	Irrigation	Domestic & Industrial	Total	Use as on 2025	for future use	Extraction (%)
	UP Total (Ham)	3772717.56	1167315.33	159010.82	1892952.6 9	6991996.40	459916.69	6532079.71	4089209.58	494837.81	4584047. 39	596453.20	2036249.37	70.18
	UP Total (Bcm)	37.72	11.67	1.59	18.93	69.92	4.60	65.32	40.89	4.95	45.84	5.96	20.36	70.18
	Gzb. (Ham)	15248.13	9630.54	1078.71	15185.9	41143.30	4114.33	37028.97	35693.32	11837.44	47530.76	17469.88	1339.60	128.36
	Gzb. (Bcm) (Mcm)	0.15 (152.48)	0.096 (96.31)	0.017 (10.78)	0.15 (151.85)	0.41 (411.43)	0.041 (41.14)	0.37 (370.28)	0.35 (356.93)	0.118 (118.37)	0.475 (475.30)	0.174 (174.69)	0.013 (13.39)	0.00128 (1.28)

Ham: Hectare meter; Bcm: Billion cubic meters; Mcm: Million cubic meters; 1 Ham = 100000; 1 cubic meter is equal to 0.0001 hectare; 1

Bcm = 100000 hectare meter; 1 Mcm = 100 hectare meters

Past study analysis of groundwater chemistry within the Ghaziabad district


Study location in Ghaziabad district	Season (Year); No. of Samples	рН	EC	TDS	тн	Ca ²⁺	Mg ²⁺	Na ⁺	K+	HCO ₃ -	SO ₄ ²⁻	F ⁻	NO ₃ -	Cl ⁻	PO ₄ ³-	Reference
In the village of Lutfullapur Nawada, Loni	August (2010); n=15	7.74	2,167.6	1,434.33	307.87	138.27	13.19	442.20	129.99	394.00	152.94	0.35	2.94	451.77	0.002	Singh et al. 2012
Region of Indo- Gangetic plain	PRM May (2011); n=250	7.3	1,803.4	1,198.8	406.6	36.9	75.4	368.1	9.8	264.1	100.6	0.82	5.9	275.4	0.03	Singh et al. 2014
Bulandshahar road industrial area and Meerut road industrial area	PRM, May; n=30	7.09	2270	1452	-	158.50	120.50	1033.41	87.48	-	-	-	-	-	-	Kumari et al. 2014
Peri-urban and urban- industrial clusters	PRM, May (2010); n=22	7.4	920	771	335	-	-	-	-	370	38.2	0.5	25.2	327	-	Chabukdhara et al. 2017

EGU General 2022

Methodology Involved

Groundwater
Sampling Stations
(26 Sites)

Groundwater Chemistry

Pre-Monsoon (May, 2017, 2018) Post-Monsoon (October, 2017, 2018)

Parameters (16):

pH, EC, TDS, Hardness, Calcium, Magnesium, Sodium, Potassium, Bicarbonate, Chloride, Sulphate, Fluoride, Nitrate, Iron, Zinc and Manganese

Spot-Specific Apportionment

$$NDDI = \frac{C (post-monsoon - pre-monsoon)}{C (post-monsoon + pre-monsoon)}$$

-1 ≤ NDDI ≥ 1

NDDI = -1 : Absolute Dilution

NDDI = 1; Absolute Accretion

Geo-statistical mapping (Ordinary Kriging)

Spatial Auto-correlation Moran's I

Land Use Spectral Indices

Indices:

NDVI, NDSI, NDBI and MNDWI

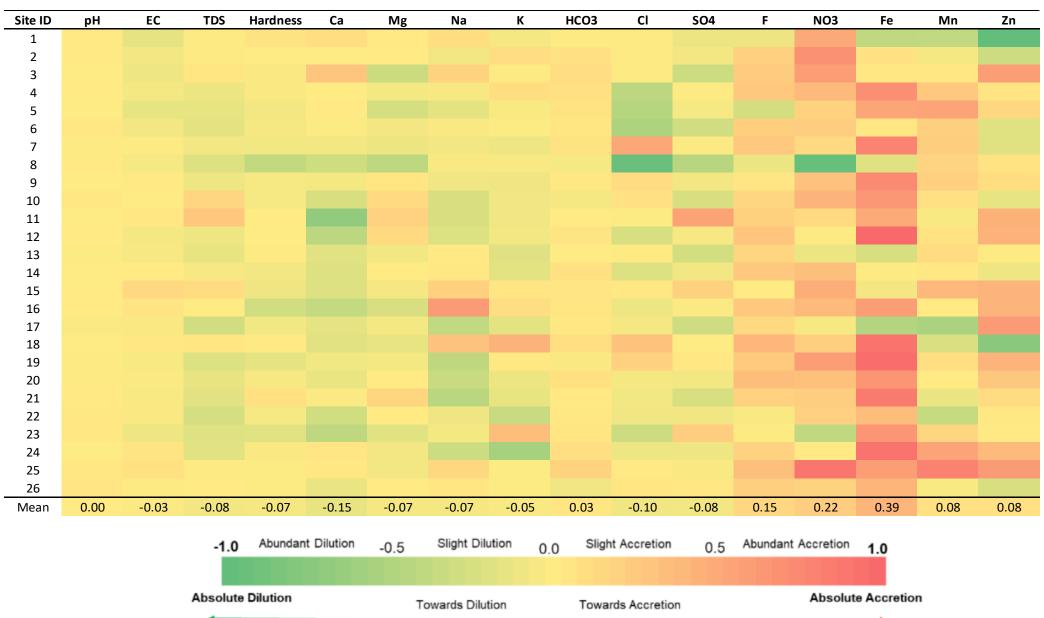
Relationship of Groundwater Chemistry with Land Use Spectral Indices


Technique:

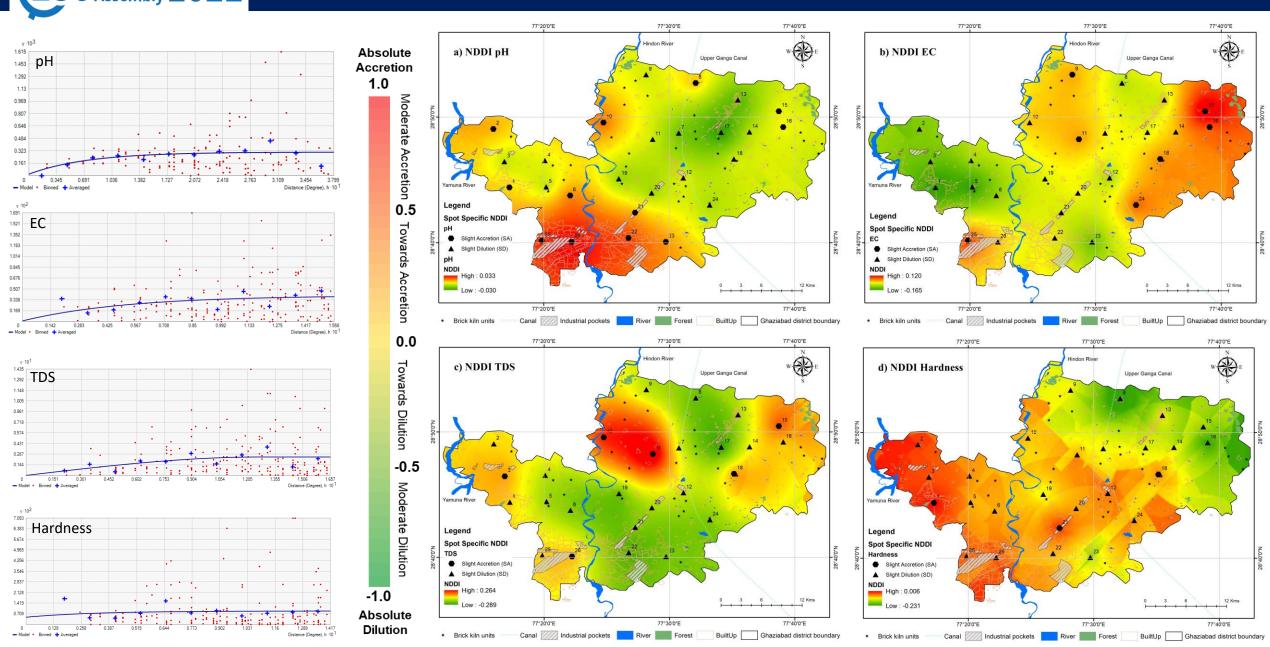
Pearson's Correlation Analysis (SPSS v21):

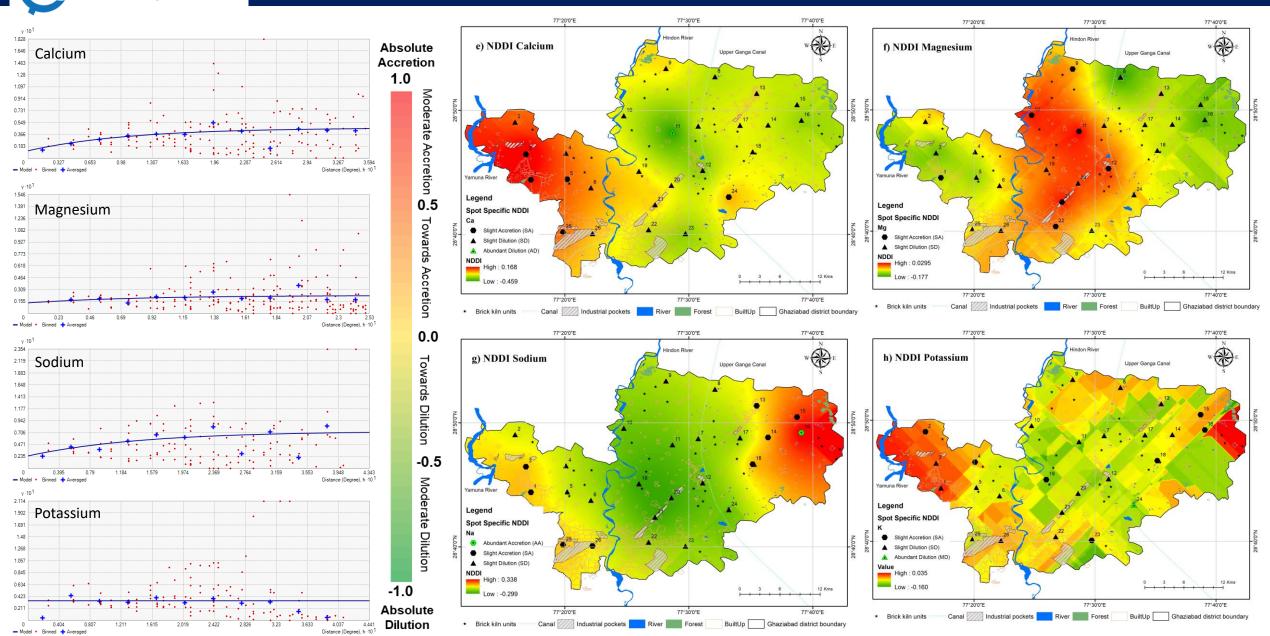
NDDI = -1; Absolute Dilution - NDDI = 1; Absolute Accretion

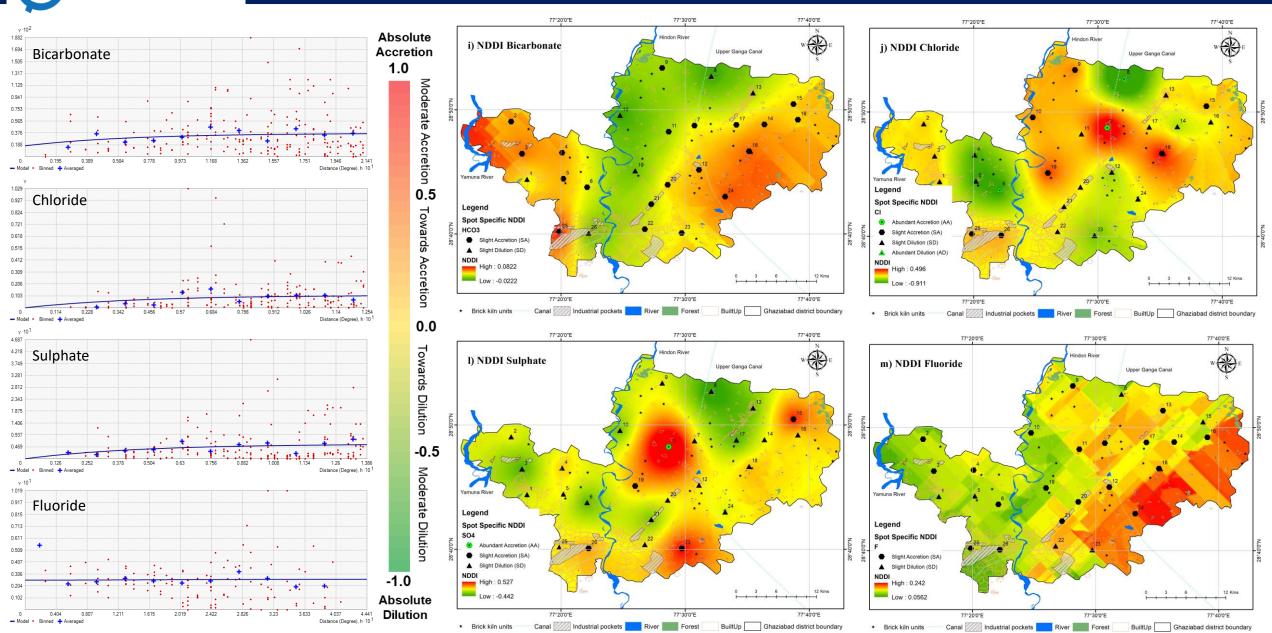
Groundwater Quality Assessment based on multiple spectral land use indices

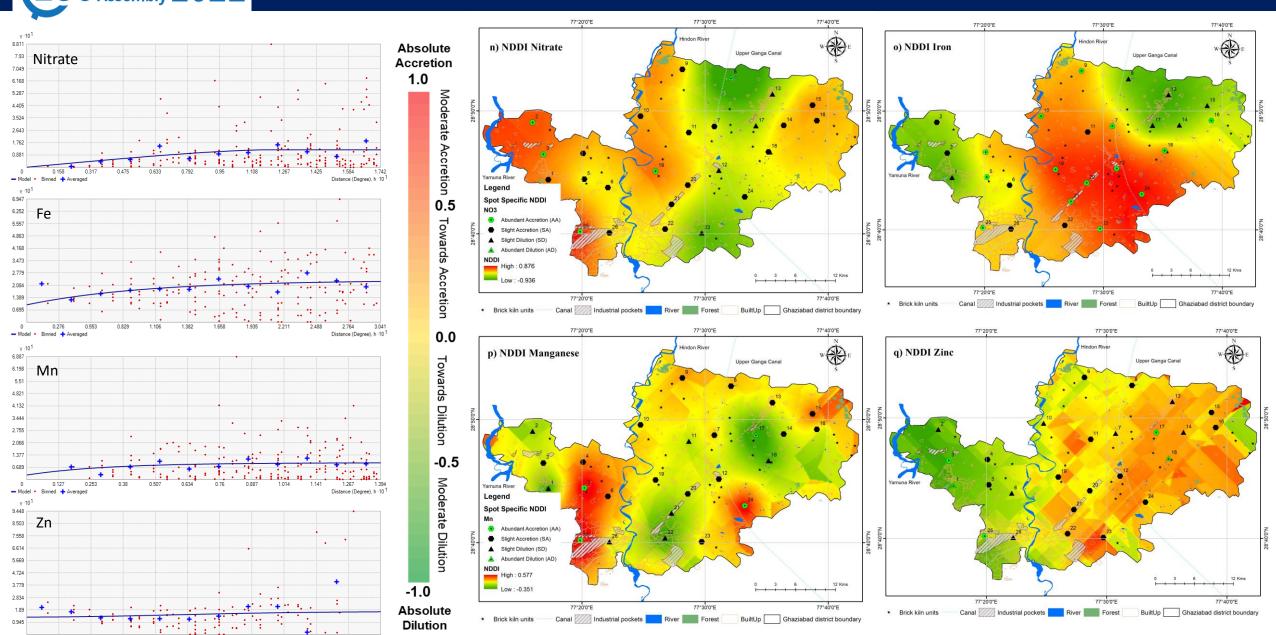


NDDI based Groundwater Quality Assessment Spot-Specific Apportionment

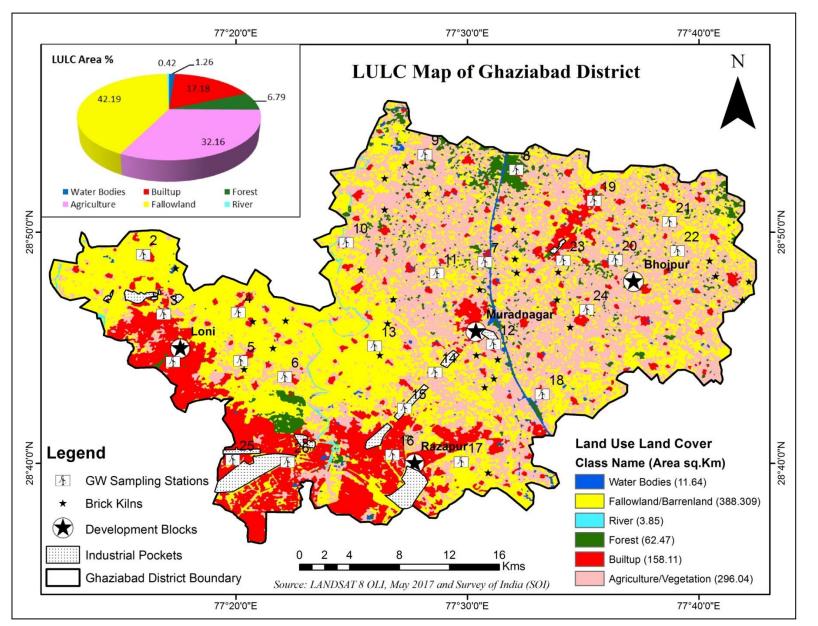

NDDI Groundwater Quality Heatmap Spot-specific apportion for accretion/dilution effects

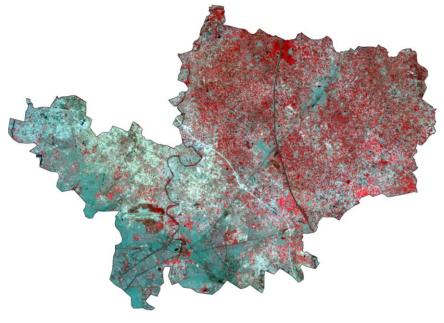





NDDI based best fitted semivariogram models in kriging interpolation and spatial autocorrelation for groundwater quality

Parameter	Model	Nugget	Major Range	Sill	Nugget/ Sill	Lag Size	ME	RMSE	MSE	RMSSE	ASE	Moran's I	Variance	Z Score	pValue
рН	Exponential	0.000	0.220	0.000	0.062	0.032	-0.001	0.013	-0.041	0.961	0.013	0.444	0.033	2.655	0.008
EC	Exponential	0.000	0.156	0.004	0.026	0.013	-0.002	0.056	-0.032	1.037	0.054	0.495	0.031	3.064	0.002
TDS	Spherical	0.000	0.127	0.025	0.000	0.014	-0.001	0.113	-0.014	0.974	0.121	0.494	0.030	3.068	0.002
Hardness	Exponential	0.005	0.095	0.009	0.536	0.012	0.005	0.103	0.050	1.060	0.097	-0.06	0.026	-0.126	0.900
Ca ²⁺	Exponential	0.011	0.320	0.047	0.246	0.030	-0.001	0.177	-0.006	1.057	0.169	0.279	0.029	1.865	0.062
Mg ²⁺	Exponential	0.014	0.247	0.023	0.582	0.021	0.003	0.148	0.017	1.032	0.143	-0.072	0.030	-0.183	0.855
Na⁺	Exponential	0.024	0.434	0.073	0.333	0.036	-0.009	0.189	-0.035	0.909	0.212	0.390	0.029	2.505	0.012
K ⁺	Circular	0.035	0.444	0.035	1.000	0.037	-0.001	0.193	-0.002	0.998	0.193	-0.157	0.028	-0.702	0.483
HCO ₃ -	Exponential	0.002	0.196	0.004	0.399	0.018	0.000	0.064	-0.010	1.121	0.056	-0.254	0.030	-1.240	0.215
Cl-	Exponential	0.000	0.125	0.108	0.000	0.010	-0.005	0.313	-0.014	1.038	0.293	-0.083	0.028	-0.260	0.795
SO ₄ ² -	Exponential	0.000	0.139	0.058	0.000	0.012	-0.001	0.204	-0.005	0.986	0.209	-0.134	0.027	-0.567	0.571
F-	Stable	0.025	0.444	0.026	0.970	0.037	0.010	0.171	0.059	1.030	0.166	0.193	0.030	1.345	0.179
NO ₃ -	Circular	0.000	0.118	0.125	0.000	0.015	0.000	0.310	-0.002	1.112	0.257	0.168	0.027	1.277	0.202
Fe	Exponential	0.098	0.304	0.237	0.415	0.025	0.006	0.393	0.019	0.945	0.420	0.208	0.032	1.384	0.166
Mn	Exponential	0.026	0.095	0.095	0.276	0.012	-0.015	0.316	-0.041	1.026	0.307	-0.023	0.030	0.101	0.920
Zn	Stable	0.135	0.444	0.177	0.761	0.037	0.003	0.420	0.008	1.079	0.387	-0.339	0.030	-1.731	0.083

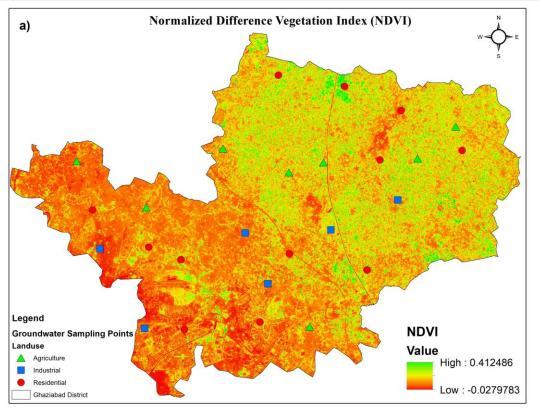




Land Use Land Cover Mapping (2017)

Path/Row	146/40
Date of Image Acquisition	2017/05/24 (May 2017)
Image Classification Method	Supervised (Maximum Likelihood Classification)
Overall Accuracy Assessment	89%
Kappa statistics Coefficient	0.835

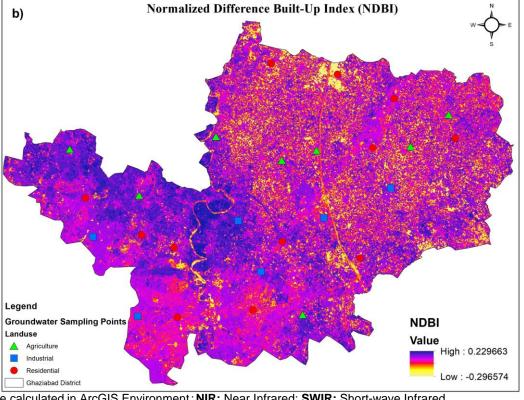
Spot-specific NDDI values for groundwater parameters and land use spectral indices


			NDDI values of Groundwater Parameters															Land Use Spectral Indices					
Location Name	pH EC TDS Hardness Ca Mg Na K HCO3 Cl SO4 F NO3 Fe Mn Zn													NDBI	NDVI	NDSI	MNDWI						
Balram Nagar	-0.023	-0.133	0.055	0.182	0.101	0.281	0.028	-0.174	-0.059	-0.042	-0.168	-0.331	0.707	-0.139	-0.341	-0.960	-0.036	0.146	-0.146	-0.125			
Mandaula Village	-0.020	-0.073	-0.040	0.055	-0.053	0.169	-0.149	-0.079	0.063	-0.163	-0.150	0.209	-1.000	-0.100	-0.038	-0.200	0.026	0.105	-0.105	-0.161			
Pabhi Sadakpur	-0.023	-0.122	-0.026	0.025	0.097	-0.067	0.154	-0.075	0.169	-0.010	-0.696	0.293	0.812	0.057	0.063	0.671	0.015	0.085	-0.085	-0.132			
Chirodi	-0.010	-0.043	-0.426	0.028	-0.045	0.077	-0.104	-0.049	0.101	-0.724	-0.092	0.582	0.728	0.711	0.226	0.045	0.026	0.109	-0.109	-0.167			
Jawali	-0.010	-0.171	-0.121	-0.019	0.017	-0.067	-0.164	-0.091	0.093	-0.695	-0.118	-0.254	0.614	0.641	0.053	0.132	-0.001	0.132	-0.132	-0.167			
Farukhnagar	-0.007	-0.056	-0.220	0.039	-0.041	0.148	-0.147	-0.088	0.061	-0.563	1.000	0.341	0.637	0.024	-0.026	-0.176	0.020	0.108	-0.108	-0.164			
Didoli	-0.002	-0.002	-0.065	-0.012	-0.086	0.041	-0.126	-0.102	0.068	-0.080	-0.007	0.418	0.601	0.685	0.025	-0.412	0.000	0.151	-0.151	-0.176			
Niwari Village	-0.006	-0.020	-0.077	-0.009	-0.125	0.082	0.511	-0.151	0.073	-0.400	-0.119	-0.091	-1.000	-0.364	0.129	0.056	-0.005	0.127	-0.127	-0.140			
Khindora	-0.011	-0.013	-0.210	0.022	-0.261	0.270	-0.243	-0.125	0.072	-0.778	-0.094	0.126	0.434	0.741	0.097	0.000	0.015	0.117	-0.117	-0.155			
Nekpur	0.031	0.004	0.155	0.022	-0.583	0.356	-0.197	-0.133	0.056	-0.152	-0.165	0.548	0.805	0.533	0.052	0.079	0.027	0.108	-0.108	-0.169			
Kakra	-0.002	-0.013	0.221	0.006	-0.714	0.298	-0.288	-0.103	0.057	-0.429	0.532	0.796	0.606	0.452	0.029	0.356	-0.031	0.171	-0.171	-0.148			
MOF	0.035	-0.054	-0.094	0.040	-0.474	0.264	-0.390	-0.210	0.045	-0.385	-0.090	0.434	0.415	0.963	0.030	0.406	0.012	0.137	-0.137	-0.169			
Santpura	0.000	-0.033	0.517	-0.055	-0.250	0.217	-0.031	-0.220	-0.020	-0.250	-0.343	0.194	-1.000	-0.848	0.127	-0.048	-0.035	0.145	-0.145	-0.122			
Khanjarpur	-0.007	-0.008	-0.171	0.000	-0.178	0.188	-0.083	-0.165	0.070	-0.167	-0.136	0.618	0.637	0.145	0.000	-0.048	-0.064	0.218	-0.218	-0.150			
Muradabad	0.013	0.000	0.028	0.021	-0.167	0.170	0.080	0.038	0.059	0.024	0.020	0.082	0.638	0.021	0.135	0.200	0.011	0.146	-0.146	-0.181			
Palauta	0.007	-0.085	0.047	-0.386	-0.443	-0.035	0.763	0.086	0.019	-0.174	-0.091	0.361	0.532	0.677	-0.200	0.377	-0.001	0.171	-0.171	-0.190			
Sikri Khurd	-0.017	0.006	0.024	0.039	-0.169	0.250	-0.486	-0.104	0.048	-0.250	-0.035	0.532	0.797	-0.439	-0.564	0.467	-0.001	0.131	-0.131	-0.155			
Kalchhina	-0.026	0.062	0.043	-0.088	-0.122	-0.037	0.328	0.446	0.091	0.409	-0.052	0.774	0.620	0.901	-0.185	-0.667	0.002	0.151	-0.151	-0.175			
Makraida	-0.020	-0.036	-0.523	0.209	0.077	0.344	-0.493	-0.054	0.000	0.000	0.017	-0.035	0.562	0.945	0.164	0.333	0.018	0.129	-0.129	-0.191			
Duhai	0.030	-0.010	-0.211	0.017	-0.154	0.158	-0.452	-0.110	0.089	-0.200	-0.074	0.342	0.620	0.672	0.000	0.379	0.025	0.080	-0.080	-0.137			
Guldhar	0.044	-0.069	0.150	0.203	-0.071	0.452	-0.512	-0.284	0.000	-0.111	-0.074	0.212	0.581	0.755	-0.036	0.121	-0.009	0.101	-0.101	-0.118			
Ghaziabad City	0.022	-0.011	-0.434	0.007	-0.354	0.316	-0.141	-0.476	0.057	0.067	-0.135	0.085	0.696	0.358	-0.590	0.008	-0.040	0.111	-0.111	-0.082			
Sadiqpur	0.020	-0.219	-0.370	-0.279	-0.400	-0.233	0.000	0.417	-0.087	-0.453	0.094	0.384	-0.573	0.627	0.043	0.006	0.004	0.123	-0.123	-0.150			
Nahal	-0.014	0.035	-0.165	0.043	0.021	0.063	-0.329	-0.592	0.095	-0.200	-0.084	0.738	0.410	0.905	0.348	0.391	0.009	0.100	-0.100	-0.139			
Surya Nagar	0.008	0.085	-0.052	0.059	0.005	0.129	0.137	-0.039	0.087	0.013	-0.066	0.456	0.657	0.641	0.702	0.759	0.011	0.074	-0.074	-0.108			
Vasundara	0.036	-0.026	-0.056	-0.018	-0.231	0.333	0.019	-0.089	0.013	-0.037	0.018	0.544	0.558	0.397	-0.056	-0.111	0.000	0.102	-0.102	-0.123			

Land Use Spectral Indices

Normalized Difference Vegetation Index (NDVI)

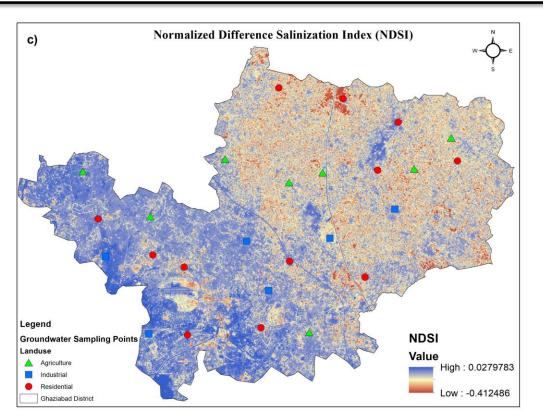
- NDVI measures green vegetation by employing bands that record highest reflectance and absorption regions of chlorophyll (Rouse et al., 1973).
- NDVI ranges from -1 to +1 and vegetation is typically seen in **0.2 to 0.8 μm.**


$$NDVI = \frac{NIR - Red}{NIR + Red} = \frac{Band \ 5 - Band \ 4}{Band \ 5 + Band \ 4}$$

Normalized Difference Built-Up Index (NDBI)

- NDBI highlights urban regions where higher reflectance in SWIR wavelength compared to NIR wavelength and generally utilized in watershed runoff predictions and land use planning (Zha et al., 2003).
- NIR band ranging from **0.76-0.9 μm** and SWIR ranging from **1.55-1.75 μm**.

$$NDBI = \frac{SWIR - NIR}{SWIR + NIR} = \frac{Band \ 6 - Band \ 5}{Band \ 6 + Band \ 5}$$

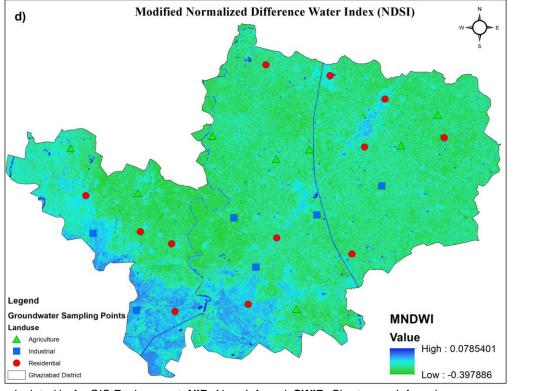

All the Spectral Bands acquired from Landsat 8 OLI (earthexplorer.usgs.gov) (Level 2) were calculated in ArcGIS Environment; NIR: Near Infrared; SWIR: Short-wave Infrared

Land Use Spectral Indices

Normalized Difference Salinity Index (NDSI)

• **NDSI is opposite of NDVI** (Tuker, 1979) and preferably used to estimate the salinization hazards in the northern part of China (Jabbar and Xiaoling, 2008).

$$NDSI = \frac{Red - NIR}{Red + NIR} = \frac{Band\ 4 - Band\ 5}{Band\ 4 + Band\ 5}$$



Modified Normalized Difference Water Index (MNDWI)

- MNDWI highlights open water signatures while suppressing noise from urban, green vegetation, and soil. MNDWI ranges from -1.0 to +1.0 and -1.0 to +0.4 μ m is the usual range for green vegetation.
- Green band ranging from **0.5-0.6 μm** and SWIR ranging from **1.55-1.75 μm**.

$$MNDWI = \frac{Green - SWIR}{Green + SWIR} = \frac{Band \ 3 - Band \ 6}{Band \ 3 + Band \ 6}$$

Source: Elbeih and El-Zeiny (2018)

All the Spectral Bands acquired from Landsat 8 OLI (earthexplorer.usgs.gov) (Level 2) were calculated in ArcGIS Environment; NIR: Near Infrared; SWIR: Short-wave Infrared

EGU General 2022

Conclusions and Recommendations

- Land use mismanagement is an important factor that must be considered in the degradation of groundwater quality.
- The absolute to moderate accretion was apparent for the parameters like nitrate, fluoride, iron, and zinc in the vicinity of the densely populated residential areas and industrial pockets. Similarly, dilution within the rest of the parameters showed a recharging effects of the groundwater.
- Site specific NDDI values were correlated with the site specific land use spectral indices in order to register the influence within the chemistry of groundwater. However, a significant low correlation (> 0.2) has been found and inter-relationships of the land use with groundwater quality is found to be moderately affected.
- Furthermore, a strong assessment can be drawn out with more concrete spectral basis in order to track the discharges of nutrient and toxic chemicals that influence the groundwater quality to a greater extent with respect to anthropogenic impacts.
- Land-use management measures can produce significant groundwater quality and quantity benefits at relatively modest cost and improving integrated governance towards sustainable abstraction and protection of groundwater.

Guru Gobind Singh Indraprastha University, India Directorate of Students' Welfare (DSW), GGSIPU, India (Travel Support)

&

University Grant Commission for providing Senior Research Fellowship

