

Aerosol property retrievals with the use of an airborne compact multi-angle polarimeter (C-MAP)

<u>Anna Gialitaki</u>^{1,2}, Marios Panagi¹, Alexandra Tsekeri³, Steven D. Lloyd¹, Alexander Lodge⁴, Neil Humpage¹, Ranvir Dhillon¹, Antonio Di Noia^{1,5}, Hartmut Boesch^{1,5}, and Joshua D. Vande Hey^{1,6}

¹School of Physics and Astronomy, Earth Observation Science Group, University of Leicester, Leicester, UK; ²Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece; ³Institute for Astronomy, Astrophysics, Space Applications, and Remote Sensing, National Observatory of Athens, Greece; ⁴Space Research Centre, University of Leicester, Leicester, UK; ⁵National Centre for Earth Observation, University of Leicester, United Kingdom; ⁶Centre for Environmental Health and Sustainability, University of Leicester, UK

C-MAP instrument

- ☐ *C-MAP*: Compact, Multi-Angle, multi-spectral Polarimeter
- ☐ Airborne demonstrator adapted from the MAP/CO2M
- ☐ Measurement principle:
 - Measures the polarization of sunlight reflected on the Earth's surface $\rightarrow S = [I, Q, U, V]^T$
- ☐ Operation principle:
 - Multiple views of the same target on the ground, multiple spectral bands
 - MAPs can be extremely useful for aerosol studies
 - *Polarization* + *multiple views* => *more information*
- ☐ Targeted accuracies: 3% for I, 0.003 for DoLP

(*) Spilling, D. and Walker, A., 2021

Past, present and future satellite/airborne polarimetric missions and sensors

1996

RSP

HARP/CubeSat

spatial

resolution: 3 km

AirHARP

spatial

resolution: 20 m

POLDER 1-2
8 wls, 3 polarized,
14 angular views,
$\pm 43^{\circ}/\pm 51^{\circ}$ along/across
track scan,

nadir

8 wls, 3 polarized,	9 wls, all polarized,
14 angular views,	152 angular views,
± 43°/± 51° along/across track scan,	± 60° with respect to nadir
spatial resolution: $6 \times 7 \text{ km at}$	

POLDER 3
9 wls, 3 polarized,
16 angular views,
± 43°/± 51°

3 polarized,
16 angular views,
$\pm 43^{\circ}/\pm 51^{\circ}$ along/across track scan,
spatial resolution: 6 × 7 km at nadir

4 wls,
all polarized,
60 angular views for 670 nm;
20 angular views
for other wls,
94°/114°
across/along
track scan,

MAIA/OTB-2	HARP2/PACE
14 wls,	SpexOne:
3 polarized,	Hyperspectral
	measurements in
5–9 view	the range 385–
angles per	770 nm,
scene,	
	5 angular views
365/235 km	between $\pm 57^{\circ}$,
along/across	
track scan,	spatial resolution
	5 km
spatial	
resolution	HARP2 - as
\sim 200 m at	HARP and
nadir	AirHARP

SpexOne and HARP2/PACE	MAP/CO2M

2025...

MAP/CO2M
8 wls, all polarized
40 angular views between \pm 60°,
spatial resolution 4×4 km off-nadir,

... and more (see *Dubovik et al.*, 2019)

Example applications

Aerosol optical properties

Aerosol column volume concentration

Cloud optical thickness

23-27 May, 2022 / Vienna / Austria

C-MAP characteristics

- ✓ 7 bands in visible and near-infrared: 410, 443, 490, 555, 670, 865nm
- ✓ Measurements of I, Q and U (\rightarrow DoLP)
- ✓ >40 different viewing angles
- ✓ System <u>design follows the CO2M/MAP design</u> developed from TAS-UK (*) → *difference: single camera*
- ✓ *Compact* and *light-weight*, can work even on low cost CubeSats or similar platforms

(*) Spilling, D. and Walker, A., 2021

Aerosol property retrievals with GRASP*

- ✓ Open source retrieval algorithm
- ✓ Aerosol and surface properties
- ✓ Highly versatile, can facilitate a large variety of input data (active/passive remote sensing sensors, in-situ data, ground-based/airborne/satellite)
- ✓ Can be used for measurements above different surfaces (i.e. bright surfaces like deserts)
- ✓ Includes 2 independent modules:

23 – 27 May, 2022 / Vienna / Austria

Description of sensitivity study

GRASP/POLDER and MODIS climatology

- ✓ Assess the retrieval of aerosol properties (shape, size, composition) using C-MAP radiance and polarization measurements
- ✓ Quantify the uncertainty of the retrieved properties
- ✓ For measurement campaign: define measurement strategy for optimum retrievals (e.g. time of the day, SPP measurements)
- ✓ Evaluate instrument performance over different land types

Preliminary results – Size distribution (single pixel retrieval, grassland, $sza = 55^{\circ}$, plane trajectory aligned with SPP)

	$<$ r $_{eff(f)}>(\mu m)$	$\begin{aligned} &\epsilon_{reff(f)}\left(\mu m\right)\\ AOD_{440} &= 0.1 - AOD_{440} = 0.4 \end{aligned}$	$<$ r $_{eff(c)}>(\mu m)$	$\begin{aligned} \epsilon_{reff(c)}\left(\mu m\right)\\ AOD_{440} &= 0.1 - AOD_{440} = 0.4 \end{aligned}$
Urban	0.12	-0.01 - (-0.03)	3.35	1.13 - 0.8
Smoke	0.12	0.002 – (- 0.006)	2.33	0.5 - 0.15
Dust	0.13	-0.002 - (-0.003)	1.85	-1.3 – (-0.6)

23 – 27 May, 2022 / Vienna / Austria

Key findings so far

- lacktriangleq Fine mode $r_{\rm eff}$ for all aerosol models are retrieved quite well
- ☐ Coarse mode is challenging
 - C-MAP measurements mainly in the visible \rightarrow not enough information for larger particles
 - Narrow scattering angle range (\sim 50 180°) \rightarrow no information from forward scattering
- ☐ To improve the CRI and SSA retrievals, the number of parameters to be retrieved can be decreased
 - This methodology has been successfully applied for POLDER/PARASOL*, AirHARP** and 3MI*** multi-angle, multi-spectral polarization measurements

^{*}Dubovik et al., 2011

^{**} Puthukkudy et al., 2020

^{***} ERA - Enhanced Retrieval of Aerosol properties: reference and NRT algorithm prototype for 3MI mission, 2018

Future work

- ☐ Two demonstrator flights with C-MAP are scheduled in the UK for late 2022
 - Validation: Overflights of UK AERONET stations
 - Potentially align with an overpass of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)

- LN-Tic
- ☐ *Instrument testing on the ground in the remote sensing observatory of Space Park Leicester:*
 - C-MAP
 - Multi-wavelength sun/sky radiometer with polarization capability (part of the AERONET* network)
 - Polarization lidar @355nm (following ACTRIS** standards)
 - MAX-DOAS spectrometer
 - Explore C-MAP sensitivity for ground based measurements
 - Synergistic retrievals (i.e. with lidar (profiling) or MAX-DOAS spectrometer)
 - ➤ Validate against CIMEL sun/sky radiometer retrievals

Acknowledgements

The C-MAP system is being under development by Thales Alenia Space (https://www.thalesgroup.com/en/global/activities/space), under a UK Space Agency *Centre for Earth Observation Instrumentation* funded activity in collaboration with the University of Leicester.

The authors would like to thank GRASP team for making the algorithm available (https://www.grasp-open.com/)