

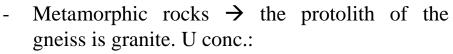
Natural radioactivity and rock-water interactions in the springs of Sopron Mountains (Hungary)

Bence Molnár,

Petra Baják, Katalin Csondor, Viktor Jobbágy, Bálint Izsák, Márta Vargha, Tamás Pándics, Ákos Horváth, and Anita Erőss

Eötvös Loránd University, Budapest, Hungary

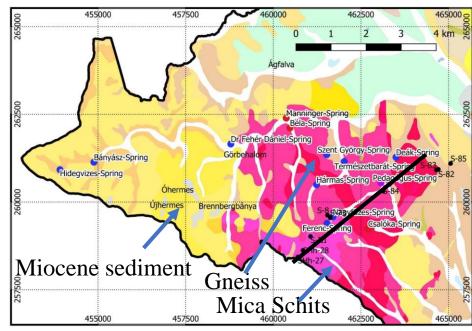
25/05/2022

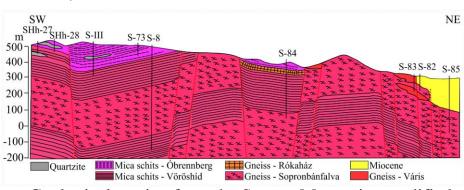


Study area

Introduction

Location: Sopron Mountains in Hungary


Why are the Sopron Mountains intresting?


Metagranite, gneiss \rightarrow 2.2 – 3.4 ppm Leucophyllite \rightarrow 1.6 – 3.4 ppm (Török, 2001)

U conc. in the Earth's crust ~2.5 ppm (Wedephol, 1995)

- Ra-226 conc. in the soil **88 Bq/kg**, (avarage in Hungary 33 Bq/kg) (Freiler et al. 2016)
- The area was previously the site of <u>fissile</u> material research
- Significant **radon anomaly** is known at the geophysical observatory (500-1000 kBq m⁻³)
- The Rn activity concentration in some springs exceeds the recommended level of 100 Bq L⁻¹. For example Csalóka Spring 220-230 Bq L⁻¹ (Aros, 2003; Freiler, 2009; Freiler, 2016)

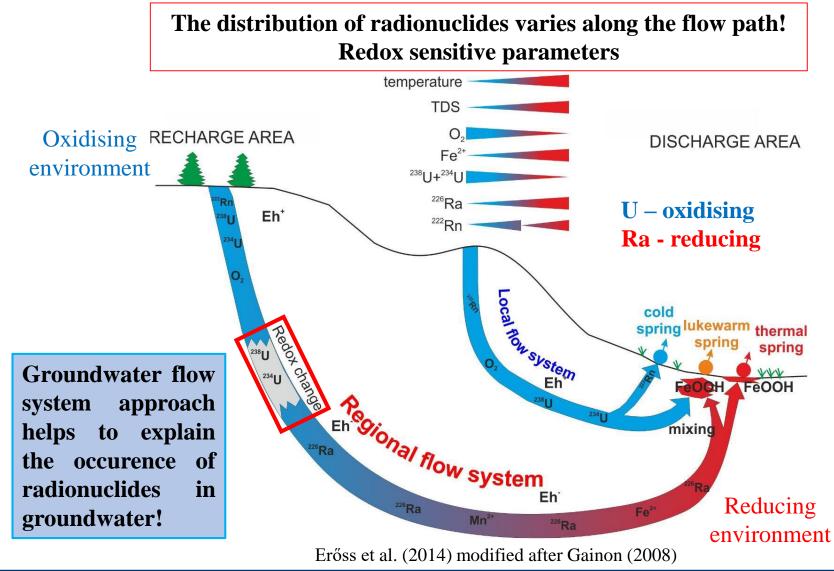
Lithology: metamorfic rocks (Gneiss, Mica Schits)

Geological section from the Sopron Mountains modified after Fülöp (1990)

https://bd.wikipedia.org/wiki/Magyarorsz%C3%Alg#

media/F%C3%A1j1:EU-Hungary.svg

Radionuclides in the gravity driven groundwater flow system


Most common in groundwater ⁴⁰K and uranium series members (²³⁸U, ²³⁴U, ²²⁶Ra, ²²²Rn) are present

Radionuclides are **natural tracers** – their behaviour in rock-water systems are well known.

Uranium mobile mainly in oxidizing environments: recharge area, local flow system

Radium mobile mainly in reducing environments: discharge area, regional flow system

Radon noble gas → significantly mobile, but short half life and/ or fast travel time

Objective

Understand the rock-water interactions!


• Investigation of the uranium, radium, radon activity concentration in spring waters from

groundwater flow system approach

Methods

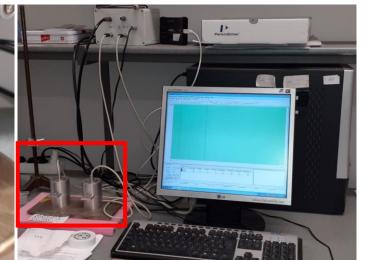
13 springs were visited (24.08.2021-25.08.2021) 10 spring water + 1 surface **water sample**

- Physico chemical properties (T, DO, EC, pH, ORP)
 YSI Pro Plus multiparameter water quality
 instrument
- Water chemistry (Na⁺, K⁺+, Ca²⁺, Mg²⁺, HCO₃⁻, SO₄²⁻, Cl⁻)
- Radionuclides (sum of U isotopes, ²²⁶Ra, ²²²Rn): Alpha-spectroscopy based on Nucfilm discs and liquid scintillation detection

(HF, BF ... name of sample)

Background

Methods


Results

Conclusion

Alpha spectroscopy

sample preparation

measurement

Radium Nucfilm disc

single channel alpha spectroscop

Duration:

preparation 8h (radium) + 20h (uranium) - measurement 24 h

Uranium

Detection limit: 5 mBq L⁻¹

Measurement of ²³⁴U + ²³⁸U and ²²⁶Ra activity concentrations by alpha spectroscopy **based on Nucfilm discs preparation** - Surbeck (2000)

Liquid scintillation detector (LSC)

measurement

cuvette

TriCarb 1000 TR instrument

Water sample

Liquid scintillation cocktail

Duration:

measurement 20 min

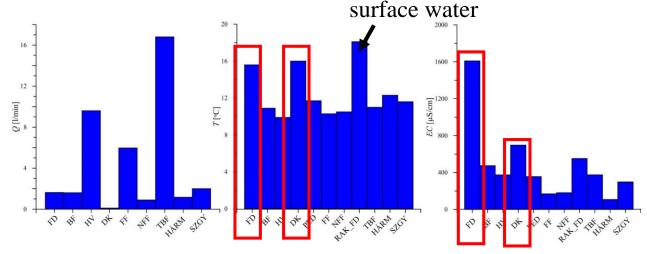
Detection limit: 2 Bq L⁻¹

²²²**Rn** activity concentrations were measured by liquid scintillation using Tricarb 1000 TR

Introduction Methods Conclusion Background Results

The waters have a similar

dominant anion HCO₃-;


Characteristic along

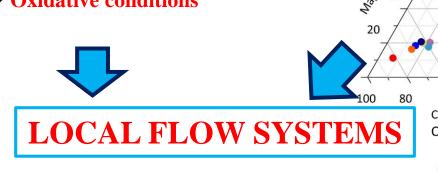
chemical composition:

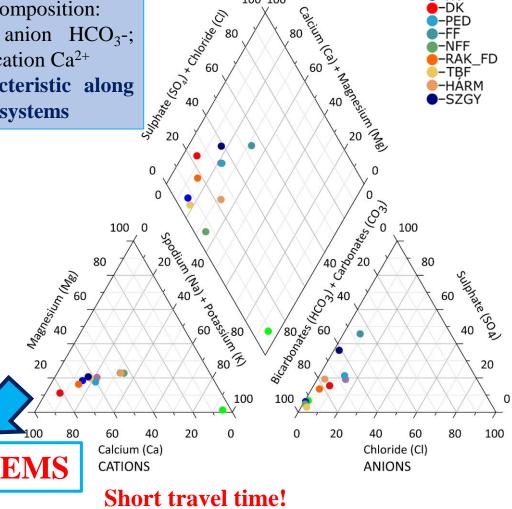
dominant cation Ca²⁺

local flow systems

Physicochemical properties and water chemistry

Discharge rate → **Low** - exceeds only 5 l/min in 3 cases (protection)

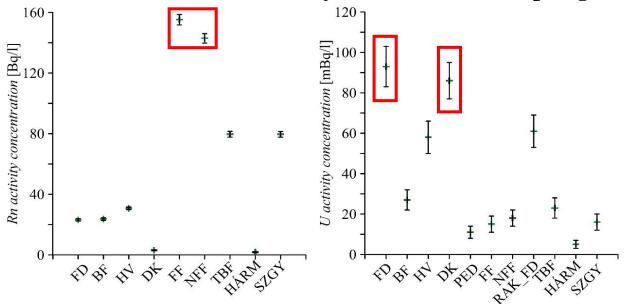

TBF (16.8 l min⁻¹); HF (9.6 l min⁻¹); FF (5.97 l min⁻¹)


Temperature \rightarrow **Low** (9.9-12.3°C) − **EXCEPTION** FD (15.6°C), DK (16°C)

Specific Electric Conductivity \rightarrow Low (107.5-474.2 μ S cm⁻¹) – EXCEPTION FD (1609 μS cm⁻¹), DK (697 μS cm⁻¹)

Redox potential, dissolved oxygen content \rightarrow Oxidative conditions

BUT: Possible explanation for higher T and conductivity of **FD** and **DK**: greater penetration depth, longer flow path \rightarrow Longer travel time → more time for rockwater interactions

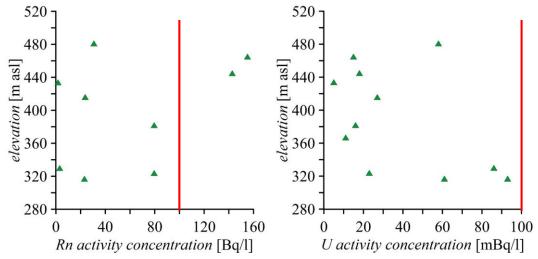


Piper diagram

Introduction Background Methods Results Conclusion

Radionuclides

Radon and uranium activity concentrations in springs

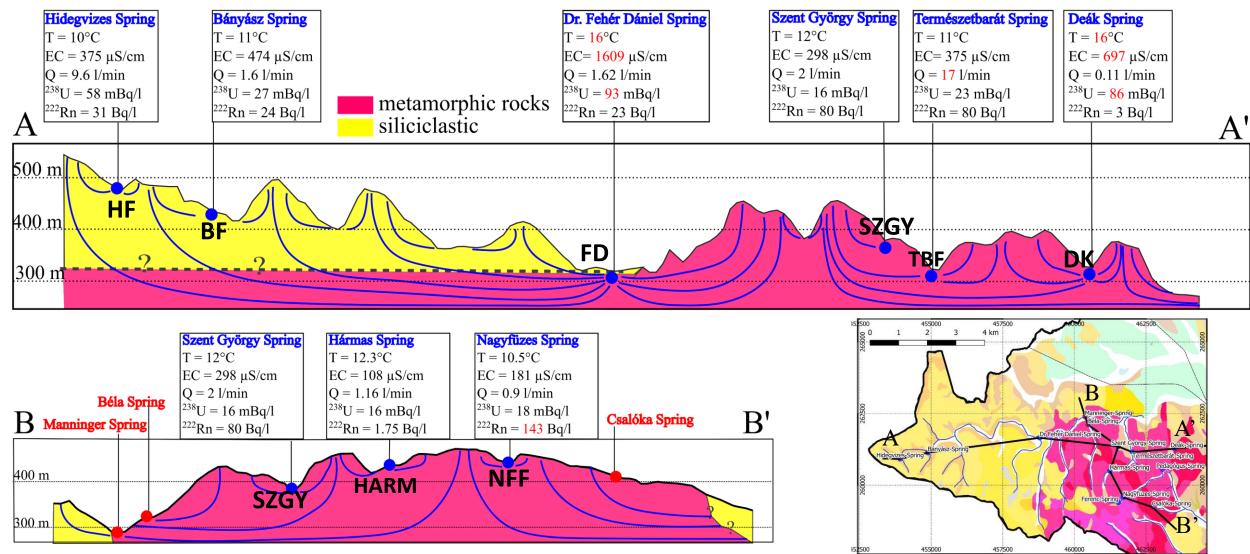


Radon \rightarrow low, but in 2 cases the concentration exceeded the recommended level of 100 Bq L⁻¹: NFF (142 Bq L⁻¹); FF (155 Bq L⁻¹)

Radium → around the detection limit (5 mBq L⁻¹)
→ OXIDISING conditions (Ra is mobile in reducing environment)

Uranium \rightarrow 5-93 mBq L⁻¹ FD (93 mBq L⁻¹); DK (86 mBq L⁻¹)

Radon and uranium activity concentration vs. elevation



Uranium concentration is higher where the travel time is longer! – FD, DK
Radon concentrations are higher above metamorphic rocks

Introduction Background Methods Results Conclusion

Schematic sketch of the area

Fehér Dániel Spring - FD, (Deák spring - DK) → "Foothill position" = longer travel time = more time for rock-water interaction

Conclusion

short travel time short time for rock-water interactions

- There are mainly **local flow systems** in the area

- Uranium is higher in foothill springs (FD, DK): longer-travel time, ie. more time for rock-water interactions
- Radon concentrations are higher above metamorphic rocks

There is no health risk in the springwaters in the recharge area, but the radon activity concentration needs to be monitored! $C_{Rn} > 100 \text{ Bq L}^{-1}$

RECHARGE AREA

Erőss et al. (2014) modified after Gainon (2008)

springs serve as a source of drinking water for hikers

TAKE HOME MESSAGE

Groundwater flow system approach helps to explain the occurence of radionuclides in groundwater.

Thank you for your attention!

Phegional flow system

DISCHARGE AREA