

Session NH3.6

SPACE AND TIME FORECASTING OF LANDSLIDES

SUB-SESSION: MAPPING, MONITORING, AND MODELLING

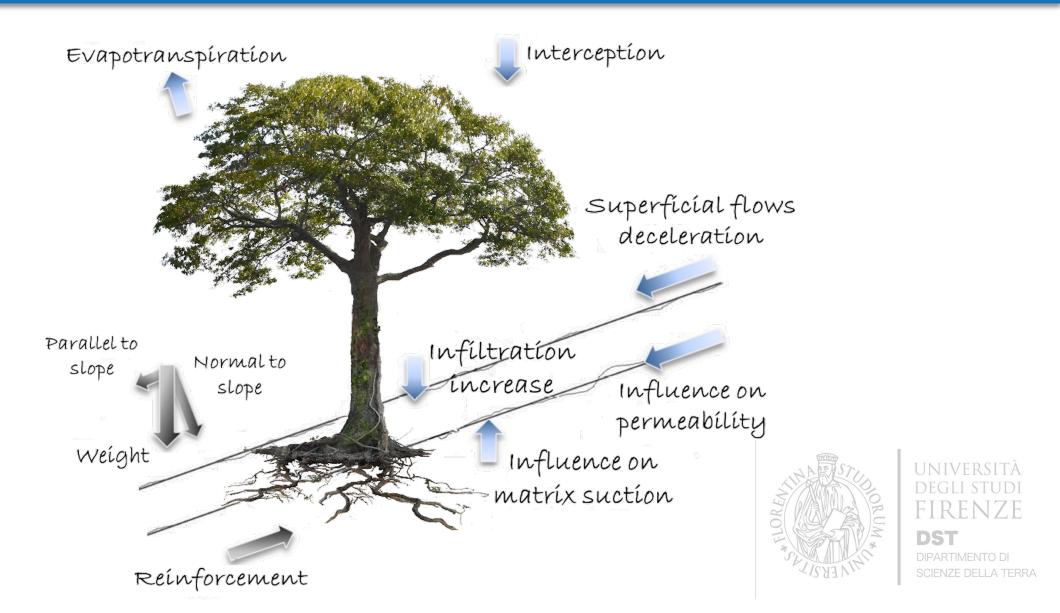
Regional slope stability simulations: recent advances in root reinforcement modelling

Elena Benedetta Masi, Samuele Segoni, and Veronica Tofani University of Florence, Department of Earth Sciences, Italy

Dealing with integrating the root reinforcement into a distributed slope stability model for a few years...

Review

Root Reinforcement in Slope Stability Models: A Review


Elena Benedetta Masi *D, Samuele Segoni D and Veronica Tofani

Department of Earth Sciences, University of Florence, Via La Pira, 4, 50121 Florence, Italy; samuele.segoni@unifi.it (S.S.); veronica.tofani@unifi.it (V.T.)

* Correspondence: elenabenedetta.masi@unifi.it

ROOT REINFORCEMENT

Mohr-Coulomb failure criterion for unsaturated soils

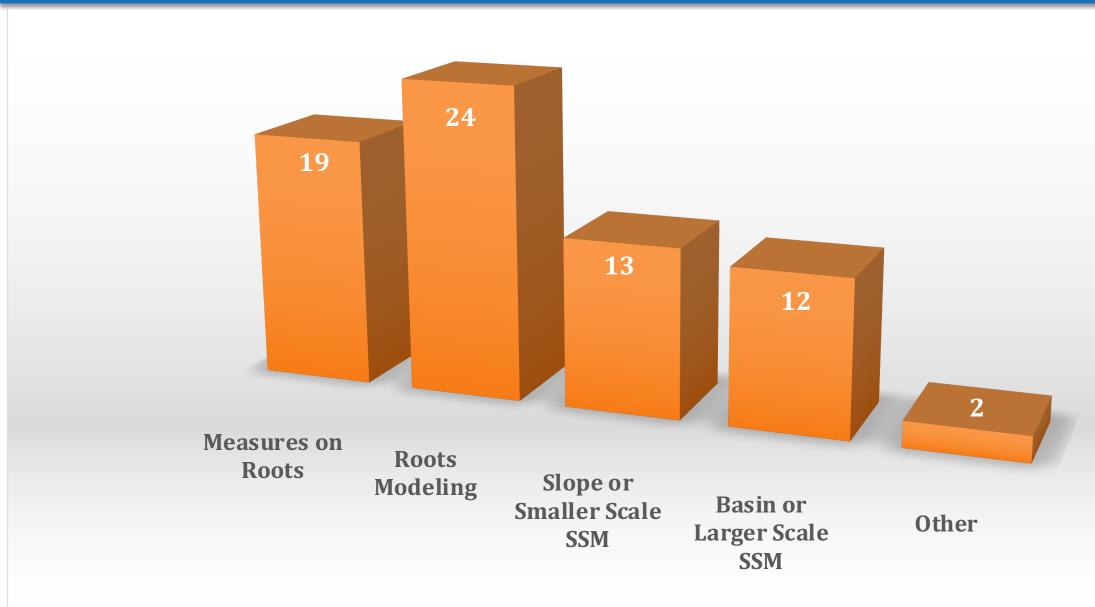
$$\tau = c' + (\mu_a - \mu_w) tan \phi^b + (\sigma - \mu_a) tan \phi' + \Delta S$$

Root reinforcement (root cohesion)

$$\Delta S \text{ (or } C_r)=kT_r (A_r/A)$$

Where T_r = tensile strength of roots per unit of soil, A_r/A = Root Area Ratio RAR, k = coefficient commonly assumed equal to $1.2_{\text{ARTIMENTO DISCOUNTY}}$

ASSESSING ROOT DENSITY SPATIAL VARIATIONS...


ROOT REINFORCEMENT MODELLING: RECENT APPLICATIONS AND RESEARCH DIRECTIONS

- Approaches for Estimating the Root Reinforcement Distribution at a Regional Scale
- New Slope Stability Models Including Root Reinforcement
- ➤ Influence of Particular Plant Species on Slope Stability
- Influence of Forest Structure, Wildfires, and Soil Moisture Gradient DEST DIPARTIMENTO DI SCIENZE DELLA TERRO

Authors	Measures on Roots	Roots Modeling	Slope or Smaller Scale SSM	Basin or Larger Scale SSM	Other
Abdi et al. 2018	X				
Arnone et al. 2016		X	X		
Bordoni et al. 2020	X	X		X	
Bordoni et al. 2016	X	X			
Chiaradia et al. 2016	X	X	X		
Chok et al. 2015		X	X		
Cislaghi et al. 2017	X	X			
Cislaghi et al. 2017	X	X		X	
Cislaghi et al. 2018				X	
Cislaghi et al. 2019	X	X		X	
Cuomo et al. 2020				X	
Dazio et al. 2018	X	X			
Gehring et al. 2019	X	X			
Giadrossich et al. 2017	X				
Gonzalez-Ollauri 2017	X	X		X	
Hales et al. 2018		X		X	
Hales and Miniat 2017	X	X	X		
Hwang et al. 2015	X	X		X	
Kokutse et al. 2016		X	X		
Likitlersuang et al. 2017			X		
Masi et al. 2020	X				
Moos et al. 2016	X	X	X		
Total Papers: 36	Count: 19	24	13	12	2

CONCLUSIONS

- The **vast spatial and temporal variability** characterizing the root reinforcement still represents an **open challenge** for research in distributed slope stability **modelling**
- High species-specific character of the root reinforcement highlights the importance to pursue the study of new plant species or different environmental conditions
- The impact of forest structure **disturbances** due to **sylviculture** or **wildfires** on root reinforcement emerged as **significative**, further studies needed
- **Soil moisture** has a **significant control** on root tensile strength, further studies highly beneficial for a thorough integration of root reinforcement into slope stability models.