

Exploring novel Compound Specific Stable Isotope (CSSI) tracers with conventional fingerprinting properties for sediment source apportionment

Ghulam Abbas¹, Seifeddine Jomaa¹, Patrick Fink¹, Arlena Brosinsky², Karolina Malgorzata Nowak³, Steffen Kümmel⁴, and Michael Rode¹

¹Department of Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research – UFZ, Magdeburg, Germany (ghulam.abbas@ufz.de)

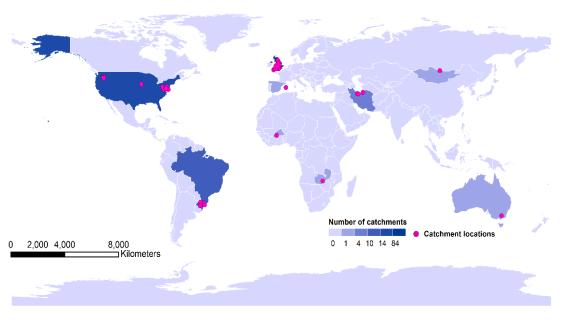
²University of Potsdam, Institute of Environmental Science and Geography, Karl-Liebknecht-Str. 24–25, 14476 Potsdam-Golm, Germany

³Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

⁴Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

23.05.2022

www.ufz.de


Motivation

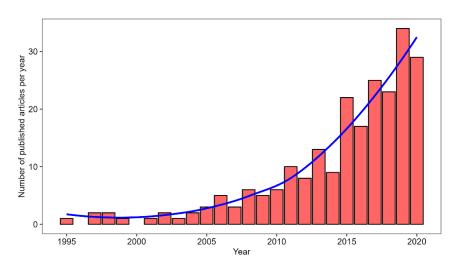
- Ecosystems are impacted by sediment inputs
- Upland and bank erosion may change with catchment size
- Share of sediment sources often unknown
- Knowledge on sources are specifically rare in Central Europe

Objectives

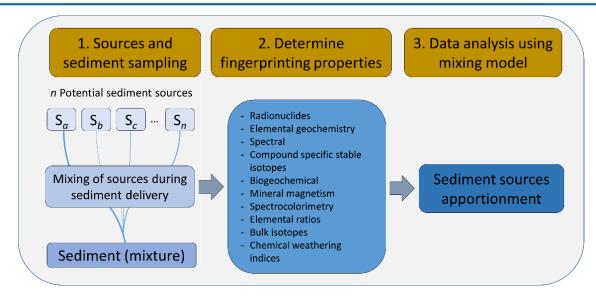
- ➤ Disentangle crop-specific soil loss
- Investigate the suitability and consistency of compound specific stable isotopes (CSSI) technique

Global fingerprinting studies

The fingerprinting studies with spatial distribution of the sites

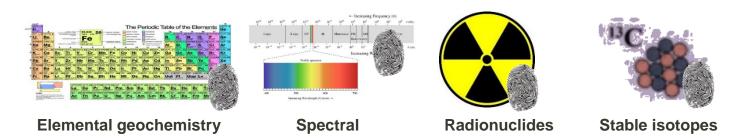

www.ufz.de

Techniques for soil erosion assessment

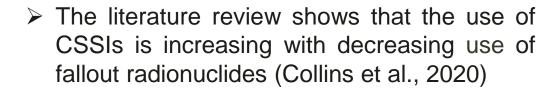

"Things you measure tend to improve"

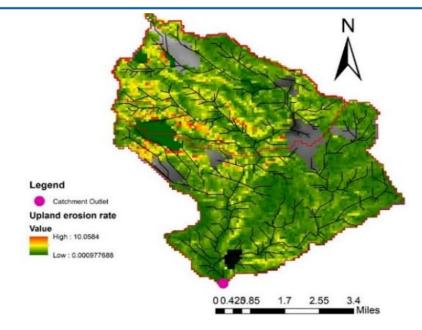
- Modeling (e.g. USLE)
- Erosion pins installation for soil loss rate
- Measuring soil erosion by field plots
- Indirect methods (i.e. sediment deposits)

Sediment source fingerprinting



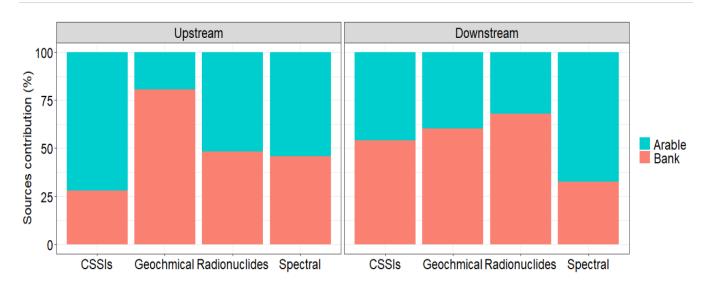
Fingerprinting studies


Schematic diagram of sediment source fingerprinting method


Fingerprinting properties selected

CSSI sediment fingerprinting method

- The CSSI method, a forensic tool, identifies the "Sources" of sediments
- The C3 and C4 vegetation produces a range of organic compounds becoming "labels" for that land use.
- The CSSI technique uses the straight-chain fatty acids as biomarkers.
- The plants produce these fatty acids in slightly different ways.

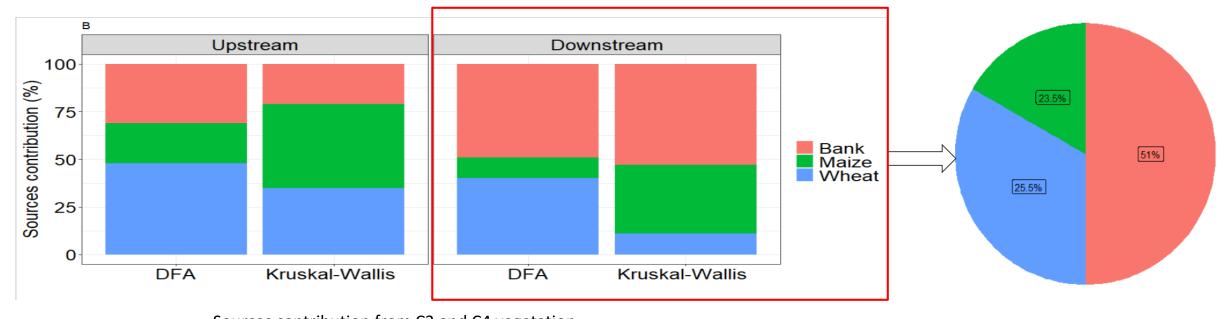

Spatial distribution of upland erosion rate

Characteristics	Geesgraben at	Geesgraben	Upstream
	Peseckendorf	midstream	
Area (km ²)	75	32	1
Major land use	Arable (86%)	Arable (82%)	Arable (100%)
Upland Erosion Rate	0.001-10.1	0.002-8.5	0.29-3.1
(t ha ⁻¹ yr ⁻¹)			

Surface and subsurface sources discrimination

Selection of tracers and mixing model

- ☐ Statistical analysis for tracers selection
- ☐ Selection of final set of fingerprinting properties
- ☐ Statistically un-mix relative contributions from sediment sources
- \Box The applicability of CSSI δ¹³C-fatty acids for specific land use types
- ☐ Linear multivariate mixing model



Sources contribution from surface and river banks

- The mean sediment contribution of bank erosion increase with increasing catchment size
- The sediment contribution using CSSIs are consistent and similar to other fingerprinting methods

5

Crop-specific soil loss from C3 and C4 vegetation

Sources contribution from C3 and C4 vegetation.

- Disentangle crop-specific soil loss such as C3 (wheat) and C4 (maize) vegetation
- The sediment contribution from C3 vegetation was relatively high at headwater catchment.
- The share of bank erosion source increases with increasing cacthment size

Conclusion

- CSSI is suitable for sediment fingerprinting at catchment scale.
- We showed that CSSI method allows to discriminate soil loss from C3 and C4 plants.
- CSSI tracers outcomes were consistent and similar to those of other fingerprinting properties.
- Share of stream bank contribution increases with increasing catchment size.
- Bank erosion may offer site-specific evidence that can be used to target bank restoration.