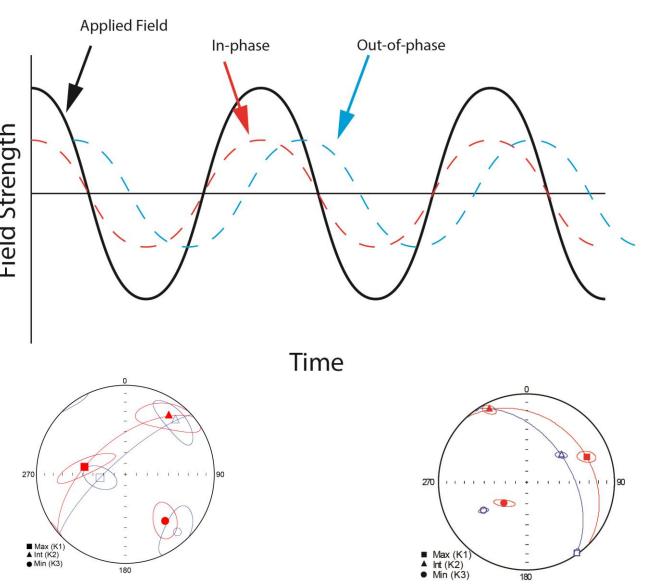


Assessing the source of out-of-phase AMS in magnetite rich igneous rocks

Lot Koopmans^{1,2*}, William McCarthy¹


- ¹ School of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK
- ² Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, UK
- * Corresponding email: lot.koopmans@earth.ox.ac.uk

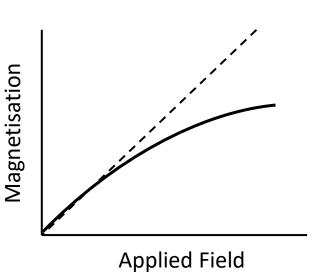
What is out-of-phase AMS?

Anisotropy of magnetic susceptibility is a measure of magnetic fabrics
KLY-5a Kappabridge AMS response

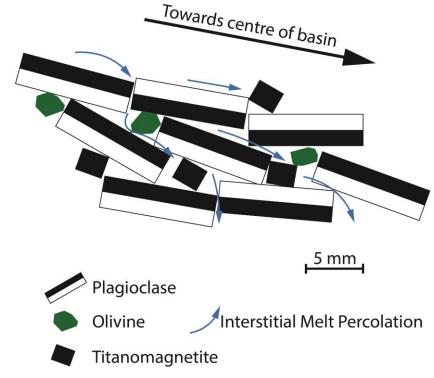
 KLY-5a Kappabridge AMS response can be decomposed into an inphase (ipAMS) and out-of-phase (opAMS) component

Poorly understood

Sources of opAMS response


- Electrical Eddy Currents
 - Highly Conductive materials (e.g. Native Cu, Graphite)

- Viscous Relaxation
 - SPM/SD magnetite (under normal AMS measurement conditions)
 - Frequency dependent
- Weak Field Hysteresis
 - Ferromagnetic phases (e.g. Magnetite, Pyrrhotite)
 - Field dependent

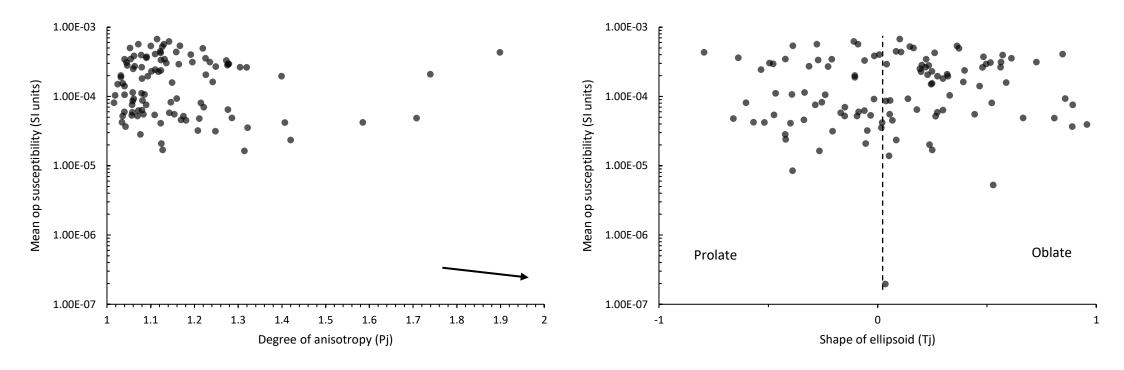


Why study opAMS?

 Controlled exclusively by ferromagnetic grains (in most geological examples)

Can record distinct magnetic subfabrics

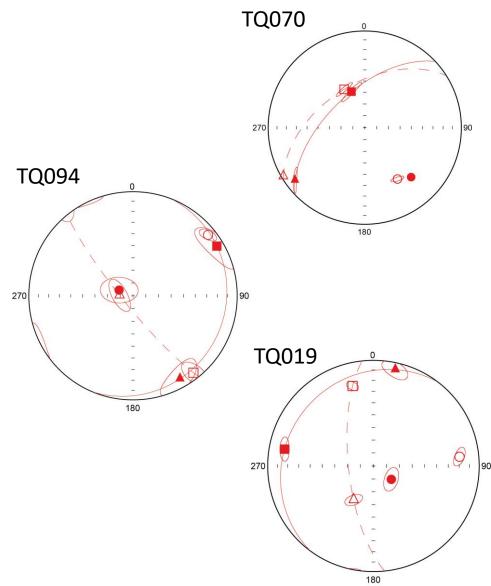
- In igneous rocks, can it record late-stage remobilization of melt?
 - Compaction-driven?


Sample set

- 106 Samples measured for AMS; 22 Samples undergone further analyses
 - Younger Giant Dyke Complex, South Greenland (Koopmans et al., 2022)
- MD magnetite Dominated (ip)AMS response
- No other ferromagnetic component observed in petrography
- No evidence of textural anisotropy

opAMS results

- Absolute opAMS susceptibility between 2×10^{-7} and 6.75×10^{-4}
 - Above detection limit of KLY-5a Kappabridge



Comparing ipAMS and opAMS

ipAMS opAMS

• 3 main ip/op relationships

- 1) Parallel ip/opAMS responses
 - Same magnetic carrier
- 2) Perpendicular ip/opAMS responses
 - Mineralogical control (inverse)
- 3) Oblique ip/opAMS responses
 - Potential magnetic sub-fabric?

Characterisation methods

Field and frequency dependency tests

- Remanence experiments
 - (SIRM, ARM, AFD, BIRM, 3-component demagnetization)
- Hysteresis experiments
 - Hysteresis loops, FORC

Field Dependent MS

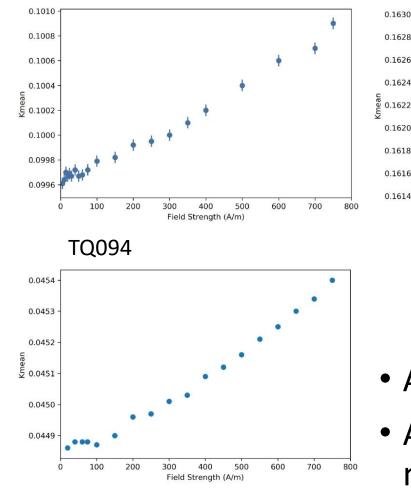
TQ019

0.1628

0.1626

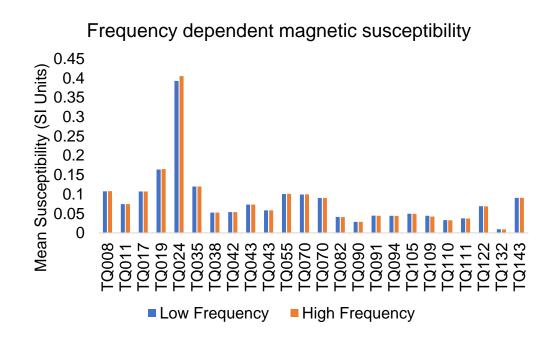
0.1624

0.1620


0.1618

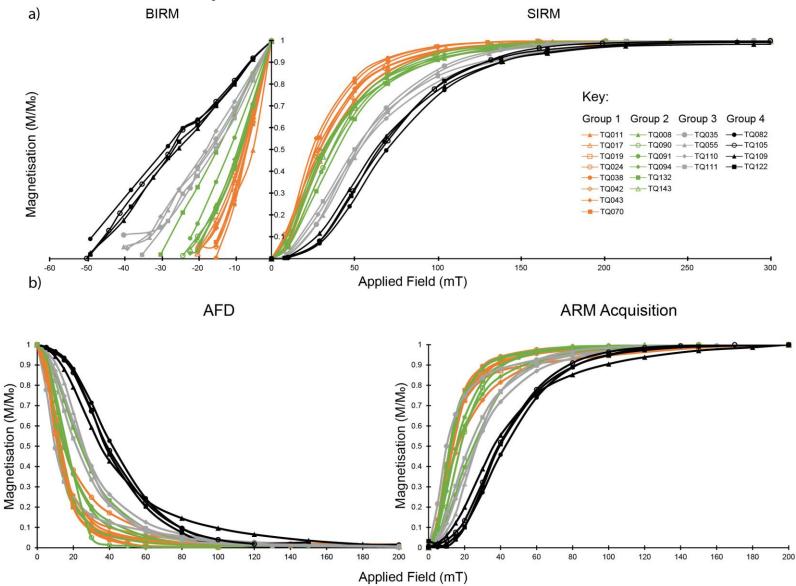
0.1616

0.1614

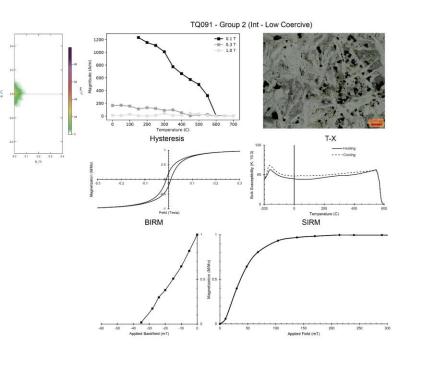

200

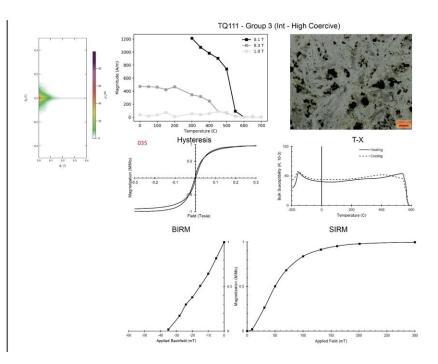
Field Strength (A/m)

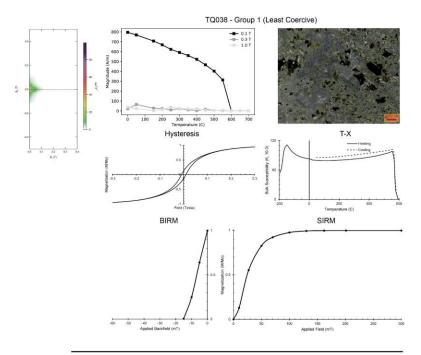
TQ070

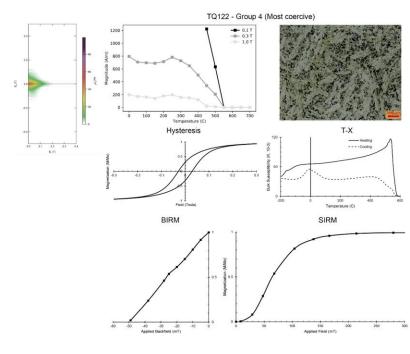

Frequency Dependent MS

- All samples are field-dependent, frequency independent
- All opAMS should driven by be weak-field hysteresis, not viscous relaxation


700


Remanence experiments




Remanence and hysteresis

• 4 distinct magnetic characterisation groups

FORC PCA

Table 4.1. Results of FORC PCA unmixing. Modelled multi-domain (MD) and single-domain (SD) components are presented alongside known MD – SD values (for synthetic samples).

	Sample	Modelled MD (%)	Modelled SD (%)	MD (%)	known	SD (%)	known
Group 1	TQ017	99.1	0.9				
	TQ024	99.1	0.9				
	TQ038	99.2	0.8				
	TQ042	99.1	0.9				
	TQ043	99.0	1.0				
	TQ070	99.3	0.7				
Group 2	TQ094	99.5	0.5				
	TQ132	98.3	1.7				
	TQ143	99.1	0.9				
Group 3	TQ055	98.5	1.5				
	TQ111	98.6	1.4				
Group 4	TQ105	98.2	1.8				
	TQ122	97.8	2.2				
Standards	W14_1	99.4	0.6		100		0
	W14_2	39.8	60.2		40		60
	W14_4	74.8	25.2		75		25
	W14_7	7.4	92.6		8		92

Standards and method: Harrison, R. J. et al., 2018: An Improved Algorithm for Unmixing First-Order Reversal Curve Diagrams Using Principal Component Analysis. Geochemistry, Geophysics, Geosystems, 19(5), 1595–1610.

Do our groups agree with ip/op relationships?

 (Very) loose relationship between magnetic characterisation groups and ip/op relationship

	Parallel	Perpendicular	Oblique
Group 1	0.625	0.25	0.125
Group 2	0.33	0.33	0.33
Group 3	0.25	0.25	0.5
Group 4	0	0.67	0.33

Conclusions and Hypotheses

- There is a (very) loose relationship between the coercivity/amount of SD magnetite in a sample and its ip/opAMS relationship
- Does not appear likely that proportion of MD vs. SD/SPM magnetite alone controls relationship
- Viscous relaxation may result in a much stronger opAMS response, resulting in a disproportionate influence on opAMS, but be masked by weak-field hysteresis in Field/Frequency dependence tests
- Nature of opAMS is still unclear, and further work is needed