What Can We Learn From a Year-Long, Live Streamflow Forecasting Competition?

HydroML Penn State University May 18, 2022

Alden Keefe Sampson

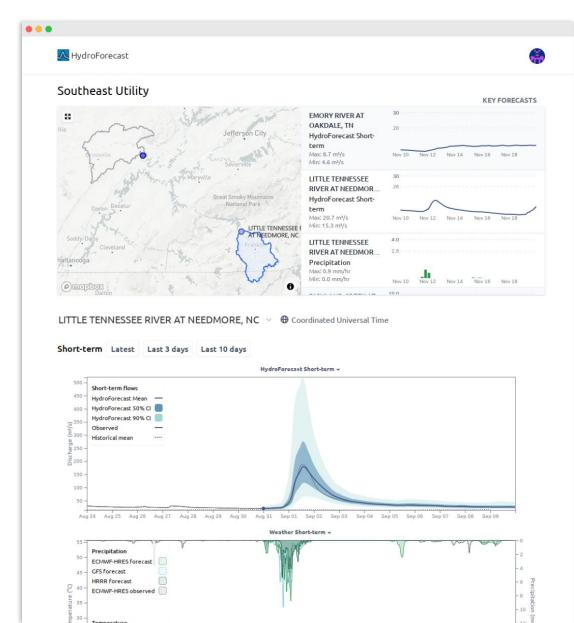
Smart climate solutions for a changing planet

UPSTREAM TECH

We build software to accelerate the pace and scale of environmental and climate work across the globe.

Our team: software and machine learning, water resource management, and environmental science.

- 10 day and seasonal flow forecasts + Ungauged reanalyses
- Theory-guided machine learning modeling approach
- Hydropower, environmental, water supply users



Today

- The streamflow forecast rodeo
- Patterns in the results
- What led to our success

The Streamflow Forecast Rodeo

- Organized by CEATI and USBR
- Sponsored by DOE, USBR, TVA, Southern Co and Hydro-Québec
- 1 year, 19 sites
- Daily streamflow forecasts,
 1-10 day horizon, 6 hour step
- Any approach, any input
- 3rd party verified by RTI
 - NSE, RMSE, Correlation, Bias

 Forecasters: Utilities, NOAA RFCs & NWM, companies, research labs, and individuals

Category Winners

	Winner by Region (Sponsor)					
Category	U.S. West USBR	U.S. Southeast TVA	Alabama Southern Co.	Québec Hydro-Québec	U.S. Mtn. West DOE	
All Arounder Leader across all metrics, horizons, seasons and flow ranges						
Flood forecaster Leader in highest flow range					NORP .	
Quick draw Leader at shortest forecast horizon						
Eagle eye Leader at longest forecast horizon						
Straight shooter Leader with lowest bias		TVA				

Tennessee Valley Authority

www.linkedin.com/pulse/competition-emerging-inflow-forecasting-technologies-

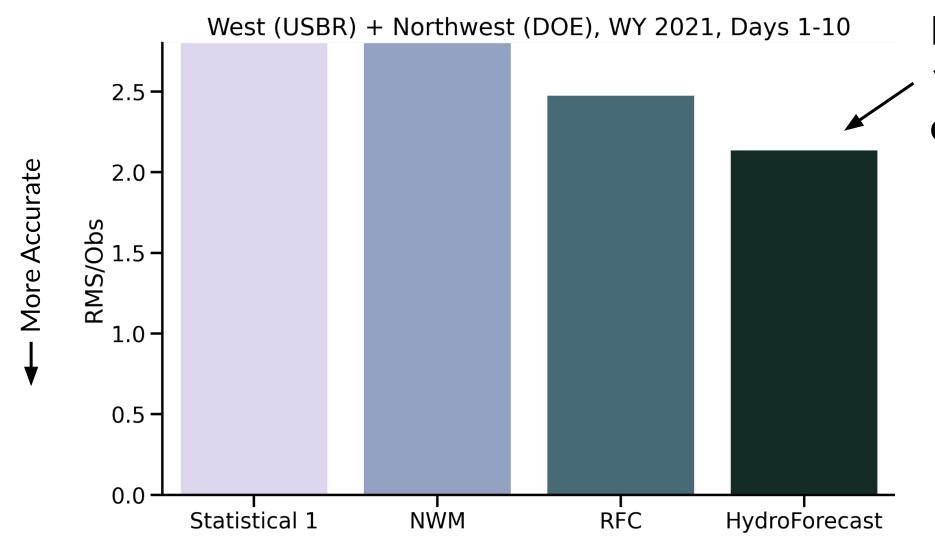
USBR Public Forecast Competition

LEADERBOARDS

	OVERALL QUARTER	LY MONTHLY	HINDCAST CHALLENGE	
RANK	HANDLE		FINAL SCORES	
1	HydroForecast (MarathonTest	<u>er5)</u>	42.46434399	
2	rasyidridha		41.06575636	
3	rekcahd		41.05503682	
4	pfr		40.90536002	
5	<u>tcghanareddy</u>		39.87873198	
6	<u>AliGebily</u>		38.86461489	
7	dsvolkov		38.558082	
8	salmiaki		38.53459806	
9	gardn999		38.02438682	
10	TheRealRoman		36.94327693	

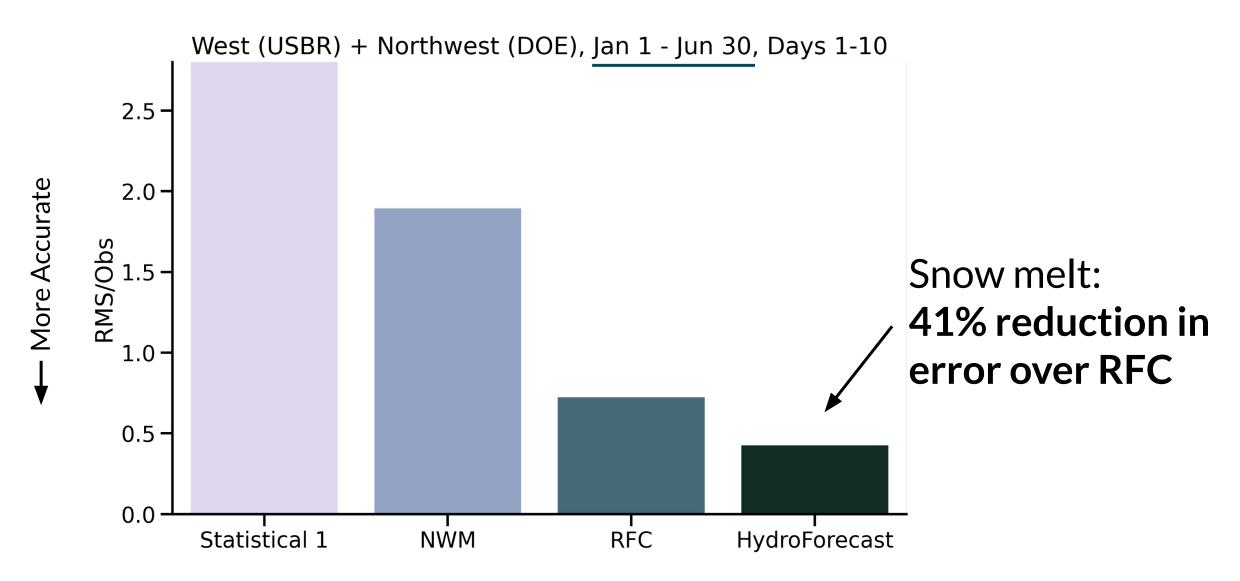
www.topcoder.com/community/streamflow

Snow Driven: US West

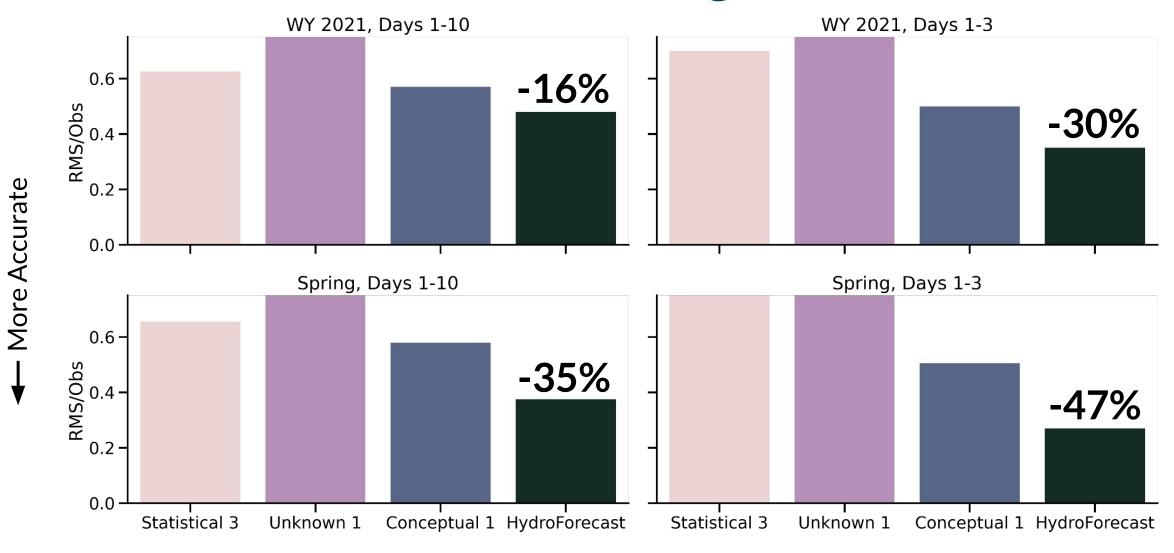


Full Year: 14% reduction in error over RFC

Snow Driven: US West

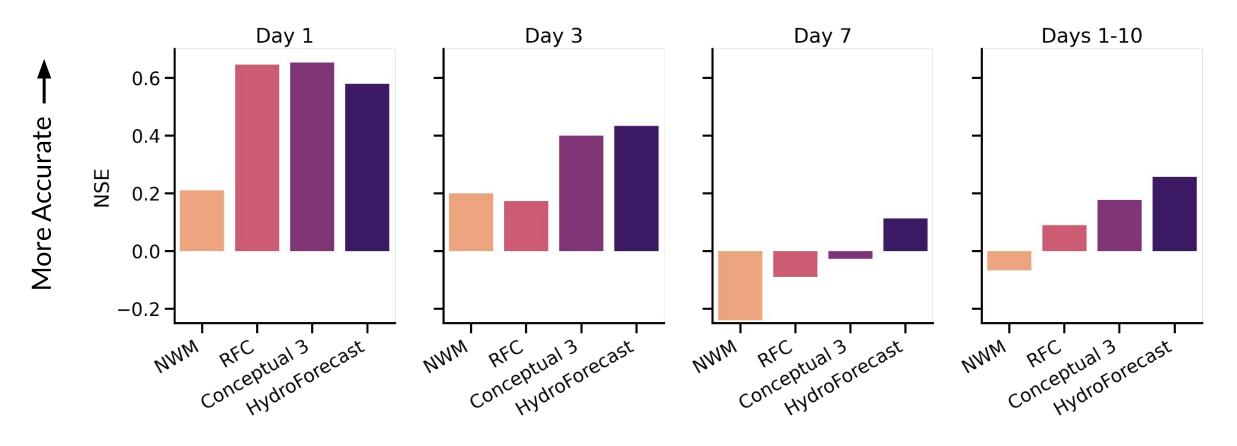


Snow Driven: Québec Region



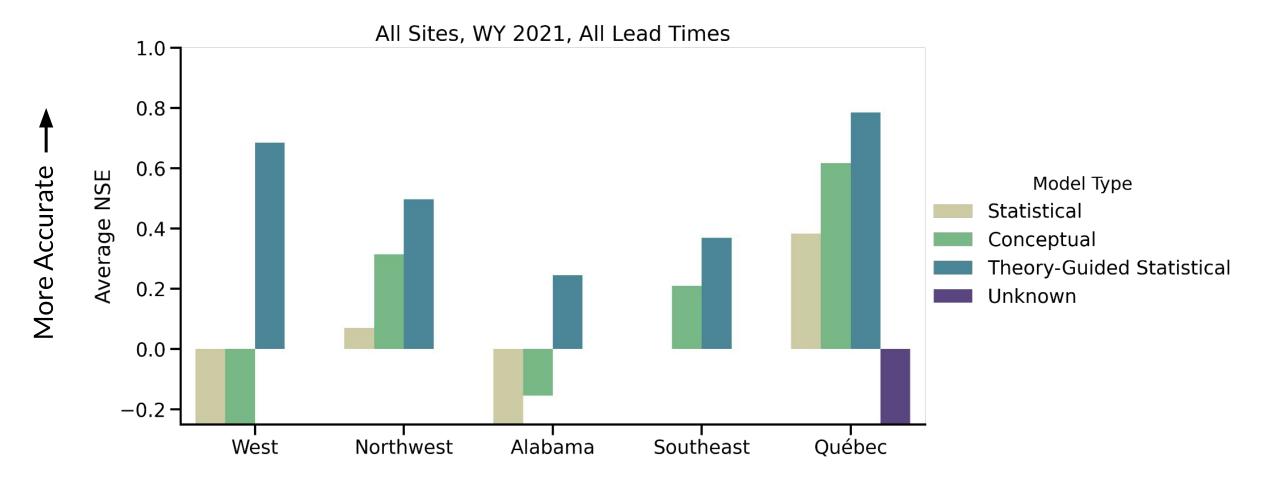
16% to 47% reduction in forecast error vs 2nd most accurate

Rain Driven: Southeast US Region



HydroForecast was only entrant with NSE > 0 one week ahead

Model Types



Very wide variation in statistical model performance

Extreme Conditions

CA Department of Water Resources, California Water Year 2020

"Water Year 2021 was California's second driest year based on statewide precipitation. (Water Year 1924 was California's driest year.)"

Strong performance in year that was drier than any our model had seen.

WY 2021 Precipitation

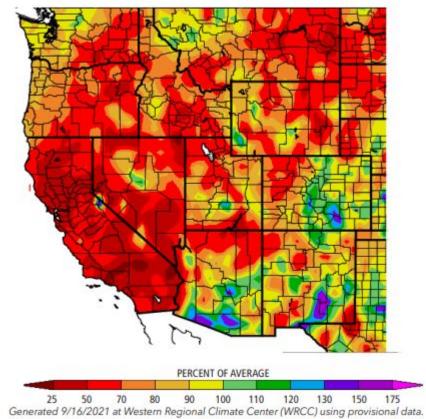


Figure credit: Western Regional Climate Center

What drives our skill?

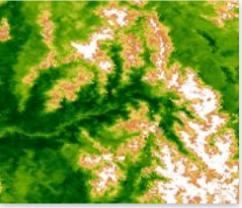
Theory-guided machine learning provides the foundation

This allowed us to leverage

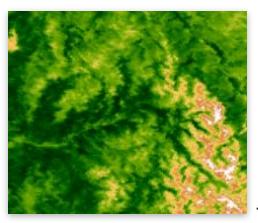
- Large, diverse training datasets
- Multiple weather forecasts
- Satellite observations
- Automatic gauge data assimilation

Satellite Vegetation & Snow

April 23



May 25



June 26

Two Phase Training

Phase 1 - Base Model

- Learn general hydrologic relationships
- Dataset contains 100s of basins

Phase 2 - Tuned Model

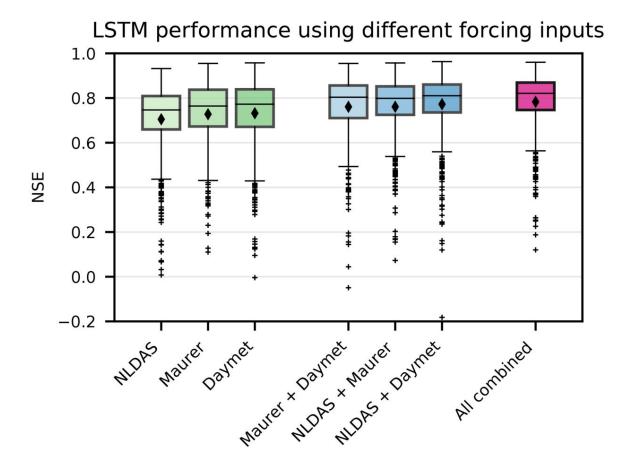
- Learn hydrology of specific drainage
- Dataset contains one (or a few) basins

Multiple Weather Forecasts

All weather forecasts are wrong.

Let the model see multiple forecasts at once and learn to use the mutual information between them.

In the competition we used GFS and ECMWF-HRES. Added more since.



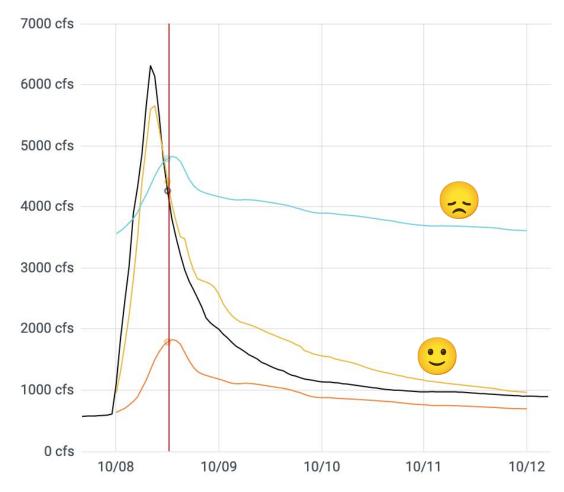
Kratzert, F., Klotz, D., Hochreiter, S., and Nearing, G. S.: A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall-runoff modeling, Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, 2021.

Flow Observation Assimilation

Goal: use recent streamflow observations to improve forecast

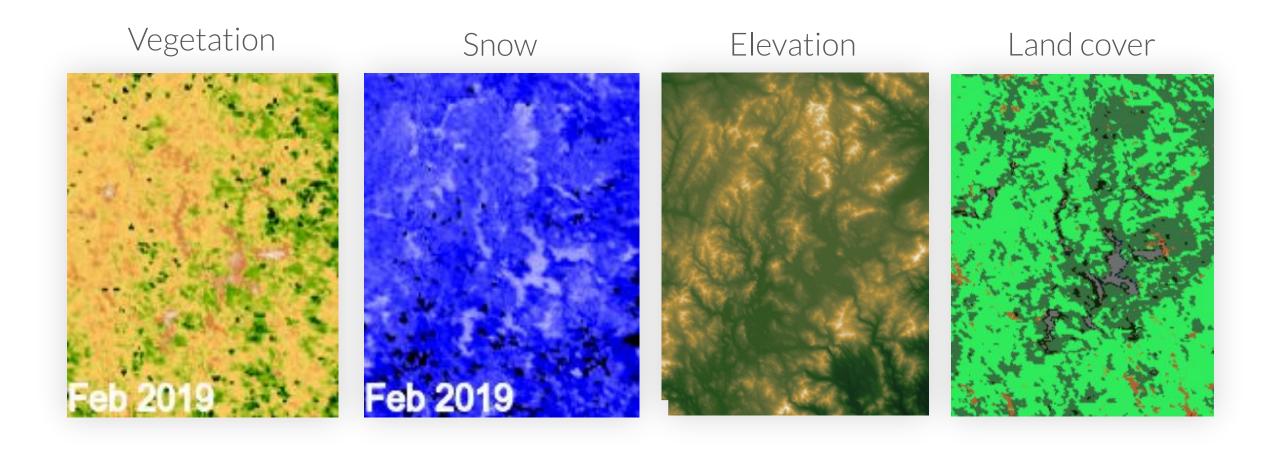
Possible approaches

- Bias shift (with decay)
- Add observations as input (autoregressive model)
- Update states to better represent true state of the system

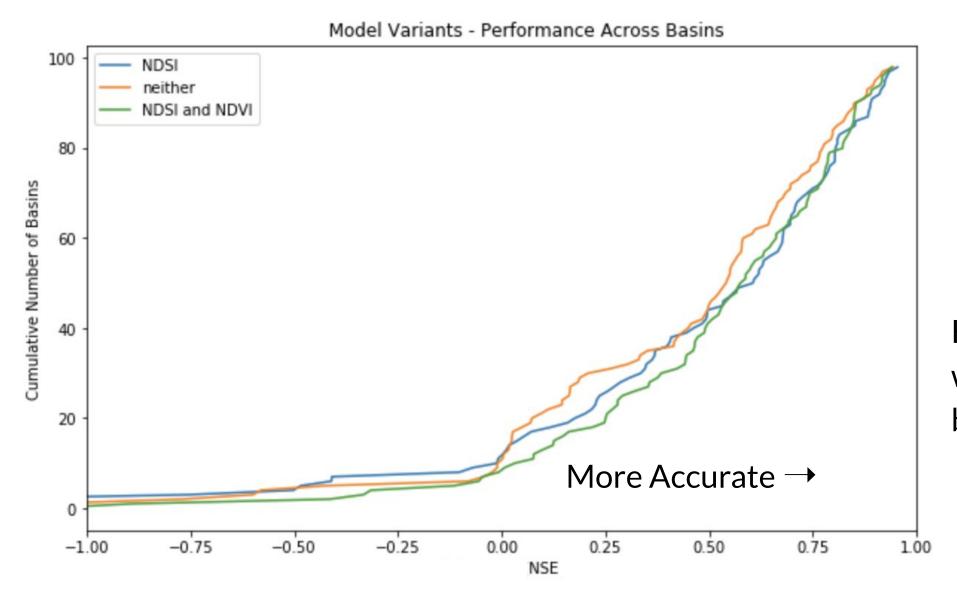


Nearing, G. S., Klotz, D., Sampson, A. K., Kratzert, F., Gauch, M., Frame, J. M., Shalev, G., and Nevo, S.: **Technical Note: Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks**, Hydrol. Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/hess-2021-515, in review, 2022.

Satellite Observations



Satellite Observations



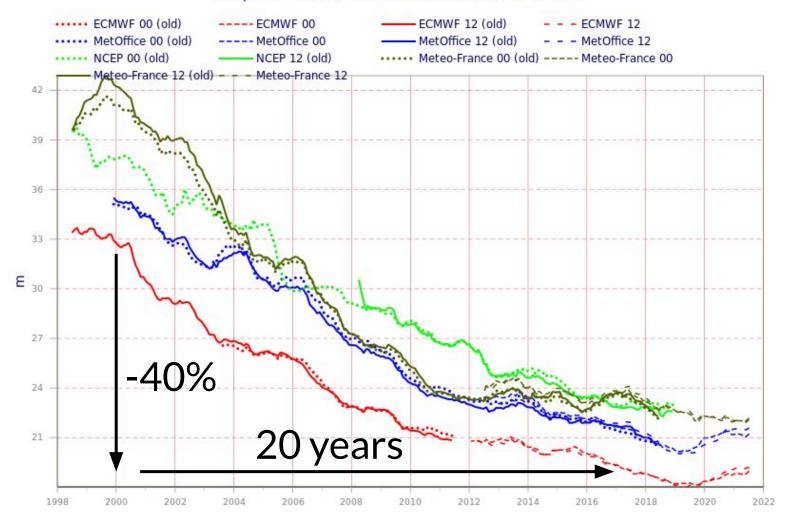
Helps most in worst performing basins

Takeaways

- Lots of room for improvement
- ML models outperformed under novel, very dry conditions
- Conceptual models broadly did not perform as well
 - Gap between ML and conceptual was smallest at flashy, rain driven sites
- Large variation in statistical model performance
 - How machine learning methods are applied matters
- Strongest performance came from theory-guided ML
 - Layered suite of techniques

Forecast Improvement in Context

Step: 72 RMSEF 500 hPa z/n.hem/observations



The world's best weather forecasts improved by about 40% in 20 years

https://apps.ecmwf.int/wmolcdnv/scores/time_series/500_z

Thank you!

alden@upstream.tech @aldenks

Smart climate solutions for a changing planet

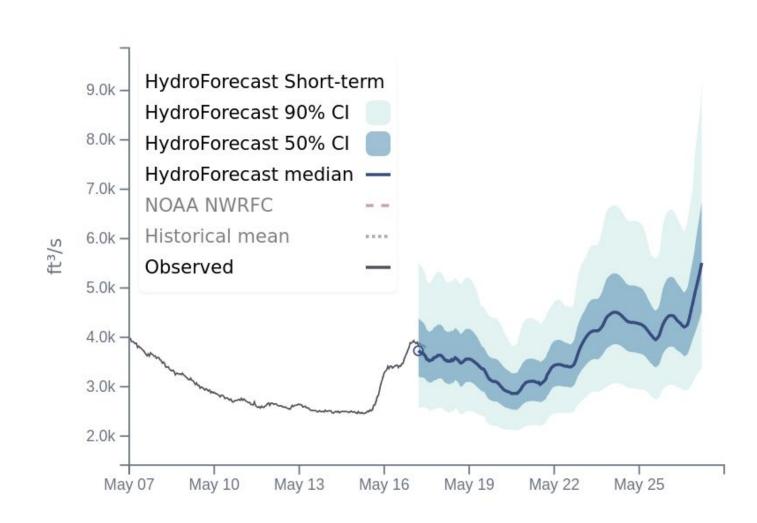
USGS Big Thompson at Estes Park, CO site visit

Appendix

Probabilistic Forecasts

Model learns to predict forecast certainty based on:

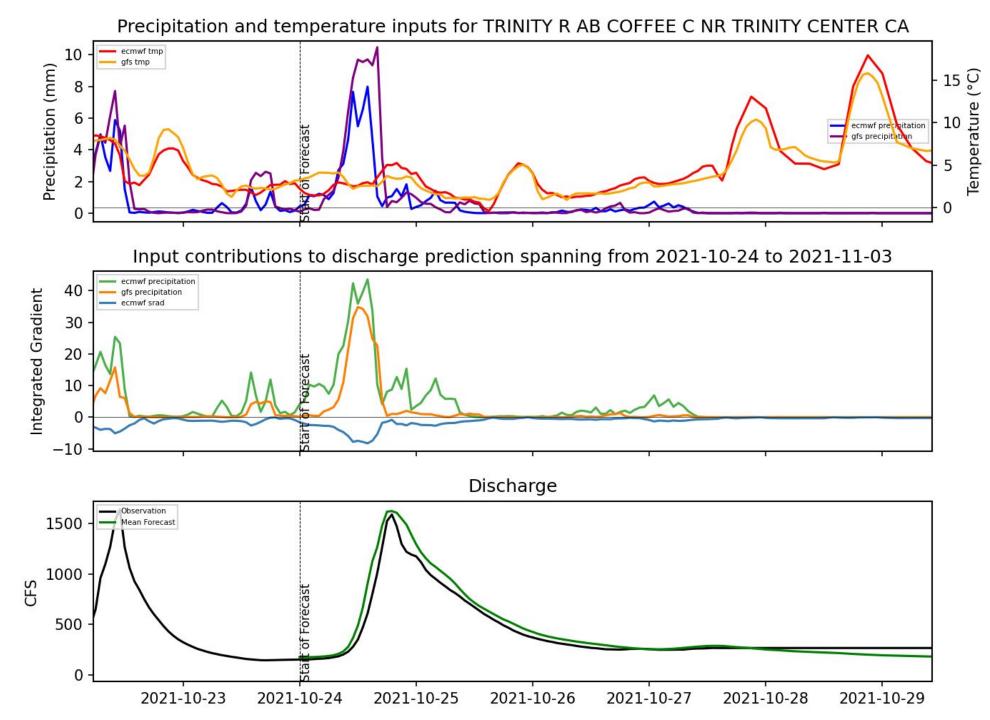
- (Dis)agreement between weather forecasts
- Basin hydrologic state
- Forecasted conditions (eg. rain on snow)
- Observation & model uncertainty



Model Inspection

Relationship between inputs and outputs

Technique: Integrated gradients (Sundararajan et al. 2017)

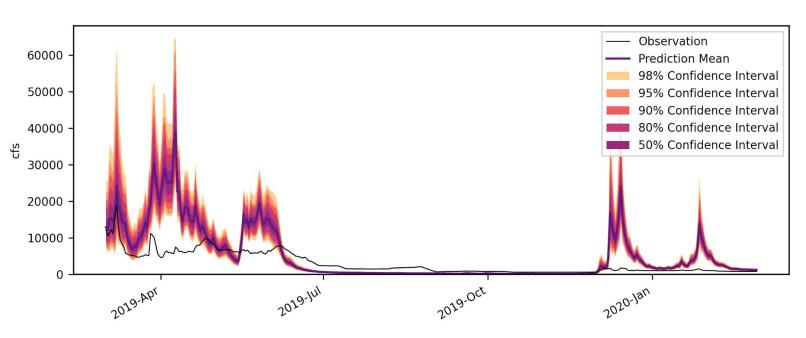


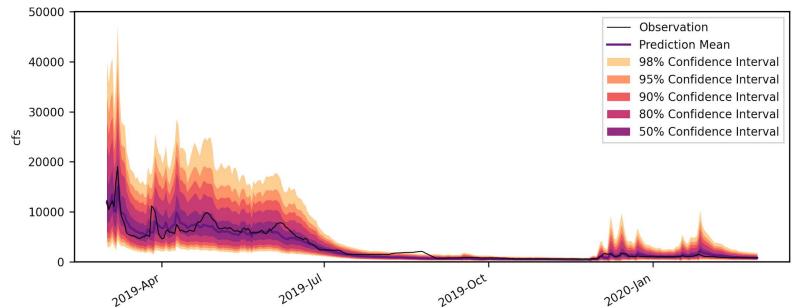
Human Altered Flow Prediction

Unimpaired Model _____

No human impact inputs

Includes inputs describing dams, agriculture, development, etc.





Ungauged Predictions

Across 531 basins in the US

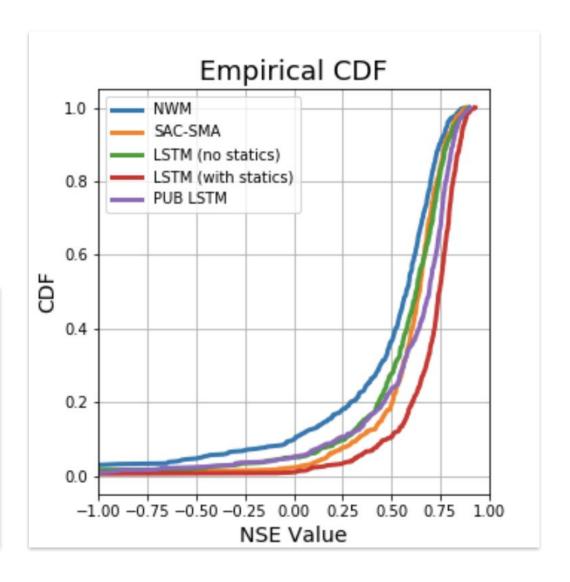
- Ungauged neural network, NSE
 0.69 (Early 2019 version)
- Gauged SAC-SMA, NSE 0.64

Water Resources Research

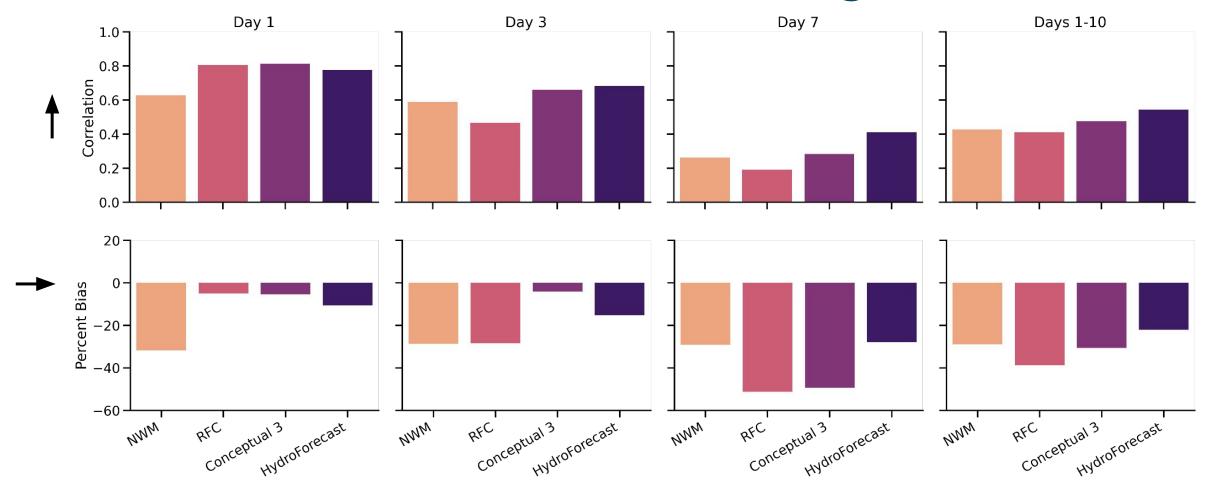
Technical Reports: Methods

Towards Improved Predictions in Ungauged Basins: Exploiting the Power of Machine Learning

First published: 23 November 2019 | https://doi.org/10.1029/2019WR026065



Rain Driven: Southeast US Region



Decent correlation: we know when flows will rise

Biased low: volume is less certain