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Hydrological systems 
are non-stationary

• Many hydrological systems 
are non-stationary, which is 
commonly attributed to 
factors such as climate 
change and urbanisation
(Wang et al., 2016; Tyralis et 
al., 2019; Crochemore et al., 
2016; Yaseen et al., 2015)

• Machine learning models 
typically assume 
stationarity
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https://www.noaa.gov/education/resource-collections/climate/climate-change-impacts

https://www.britannica.com/topic/urban-sprawl
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Research objectives

1. Present a large-scale study of ML-based flow 
forecasting for watersheds across Canada
• Local models trained to each watershed

2. Evaluate temporal trends in forecast performance
• Train models using 3 training data schemes

3. Evaluate spatiotemporal trends in feature 
importance
• Calculate feature importance using a rolling temporal 

window across the available training data

4. Study the spatial relationship between model 
performance and watershed characteristics
• Use feature importance to predict model performance based 

on static attributes
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https://cabinradio.ca/92792/news/south-slave/in-pictures-
flooding-hits-hay-river/

Historic floods in Canada

Recent flooding in NWT
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HYSETS

• Hydrometeorological dataset 
for North America assembled 
by Arsenault et al. (2020)
• Contains flow, temperature, 

and precipitation daily 
timeseries’

• Also contains catchment 
attributes, SWE, among others
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Machine learning-based flow forecasting
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• MLP (21-16-1)
• ReLu
• Adam
• Dropout (0.2)
• Stop-training (0.25)
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Baseline model performance
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Baseline model performance
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Performance versus catchment position and 
size
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Catchments in Southern Ontario have poor CE, but fair CP
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In order to understand how the performance of 
these models changes over time, so we set up 

the following experiment…
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Quantifying change in model performance
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• ‘Fixed training data’
• Data from 1980-2000

• ‘Recent training data’
• Most recent 20 years

• ‘All training data’
• 1980 to validation year

1980 … 2000
Daily hydrometric data

… 2018
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Quantifying change in model performance
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Quantifying change in model performance
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CE – Coefficient of Efficiency
CEhf – Coefficient of Efficiency for High Flows (Q>Q80)
CP – Coefficient of Persistence
MVE – Mean Volume Error

Temporal trends in 
model performance
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In addition to model performance, we want to 
understand whether feature importance is 

changing over time
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Feature importance
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Random Forest-based feature 
importance
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Temporal trends in feature importance
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If we aggregate feature importance for the 
entire period, we can also search for spatial 

patterns…
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Spatial trends in feature importance

18

Flow

Temp.



EGU22-10744

Spatial trends in feature importance

19

Precip.
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Next, we use a random forest to identify 
patterns between static watershed 

characteristics and model performance
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CE improves with seasonality, but CP does not

However, CP improves with increasing precipitation

Performance versus static catchment 
attributes
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Conclusions and future work
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• Preliminary results confirm that updating model parameter values is 
important for maintaining performance year to year

• Feature importance does not change much year to year, but exhibits 
strong spatial patterns

• Relationships between CE and flow seasonality, CP and precipitation

• Future work will look at hydrological and regional connectivity between 
catchments, additional feature selection algorithms, and additional 
forcing data
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Thank you

Contact: Everett Snieder, esnieder@yorku.ca

mailto:esnieder@yorku.ca
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Questions?
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