

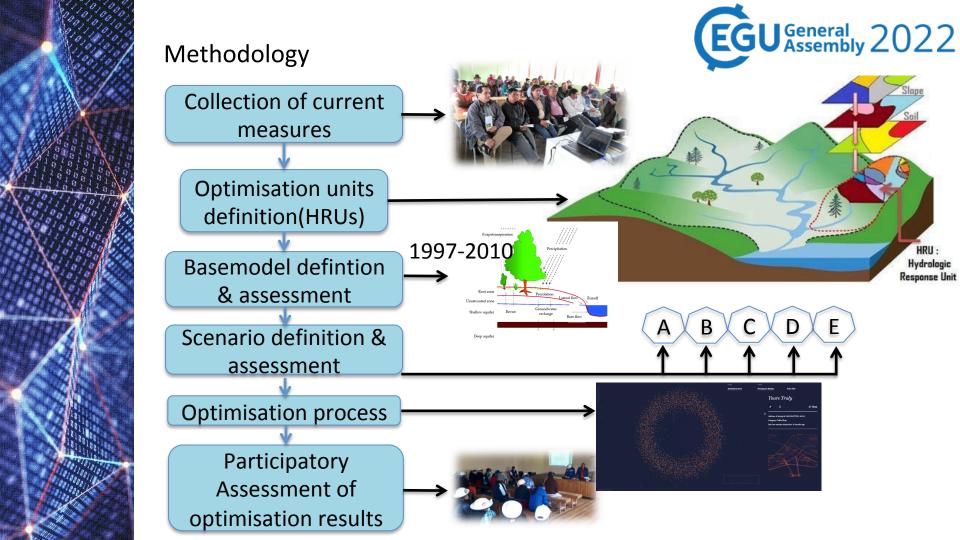
UNIVERSIDAD DE CUENCA DEPARTAMENTO DE RECURSOS HÍDRICOS Y CIENCIAS AMBIENTALES (IDRHICA)

NH1.7 EDI Hazard Risk Managment in Agriculture and Agroecosystems

Optimising agri-environmental measures at catchment scale through specific allocation with the SWAT model – A case study in southern Andes of Ecuador

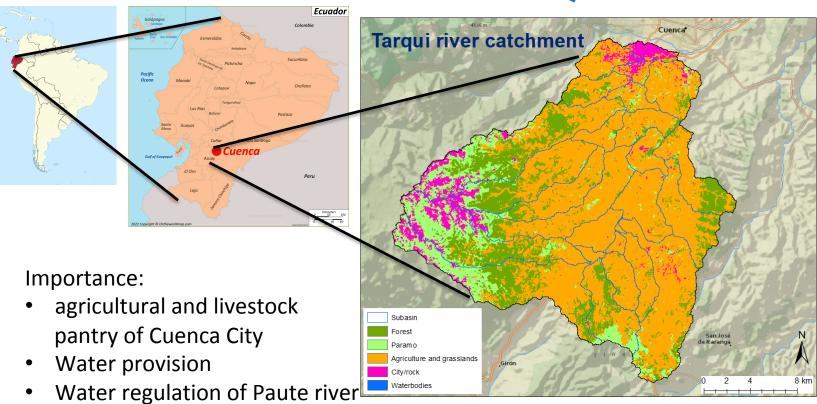
David Rivas-Tabares^{1,2}, Ana María Tarquis^{1,3}, Rolando Célleri²

- ¹ CEIGRAM, ETSIAAB, Universidad Politécnica de Madrid, Madrid, Spain
- ² Departamento de Recursos Hídricos y Ciencias Ambientales (iDRHICA), Universidad de Cuenca, Ecuador
- ³ Grupo de Sistemas Complejos. Universidad Politécnica de Madrid, Madrid, Spain.


UNIVERSIDAD POLITÉCNICA DE MADRID

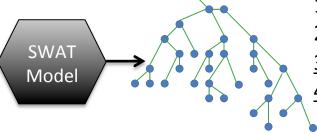
Introduction

- Agro-environmetal measures are key for sustainable agriculture
- There are places in the earth applying some sustainable practices with high potential to explore for **exporting measures to specific productive systems**.
- The **allocation of specific measures** are key in the territory to reach effectivity when asses environmental indicators.
- Optimisation is a common process to effectively allocate the measures.
 This involve several criterias of complex systems.
- Scenarios and modeling will be performed to increse reliability of the optimisation process.
- Participatory process is key for realistic scenarios in the near future



Case Study

Rural development hotspot



Optimisation structure

- Allocation of resources
- Maximising temporal availability of resources
- Minimising demand of resources
- Shortest path
- Multi-level combinatorial problem
 - Duration of performing an agro-environmental measure
 - Number of performers within the group that performs this action
 - Total execution time of all action depending on the quantitative composition of groups of performers

1st level: subbasins (22)

2nd level: HRU (250)

3rd level: Static/dynamic HRUs

4th level: Limiting HRUs performance

Scenario definition

Scenario Name	Irrigation	Food	Provision	Water Resources demand	Fertilization rates	_	rotation equences
A. CURRENT-MAX	+5%	+10%		+10%	+20%		
B. IRRI-MAX	+20%	+10%		+20%	0.0%		
C. FOOD-MAX	0.0%	+20%		-10%	-5%		
D. SUSTAINABILITY	-10%	+10%		-15%	+10%		
E. MIXTURE-A&C	0.0%	+15%		0.0%	+10%		
					·		

Results

Model	R2	NSE	PBIAS
Baseline (calibration) (1997-2005)	0.62	0.58	-9.22
Baseline (Validation) (2006-2010)	0.57	0.55	-11.01

- Reliability of flow gauge
- Pcp distribution (just 3 in ground stations)*

Variables assessed for each scenario with SWAT (used for optimisation)

Scenario/Variable	Irrigation Volume	Biomass	Crop yield	Base flow	Fert. Rate	ET
Irrigation	X	X	X	X		Χ
Food provision		X	X			Χ
Water resources demand				X		X
Fertilization rate					X	Χ
Crop Rotation		X	X			X

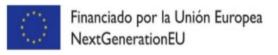
82000	Scenario Name/ Water balance variation	OUT FLOW	ET	Base flow	Lateral flow	DA recharge	
	A. CURRENT-MAX	-5.7%	+8.3%	-11.9%	-3.4%	-4%	
	B. IRRI-MAX	-12%	+6.2%	-14.4%	-6.7%	-7%	
	C. FOOD-MAX	-10%	+7.5%	-7%	-8%	-6%	
	D. SUSTAINABILITY	+0.5%	-4%	+0.3%	+4%	+3.8%	
	E. MIXTURE-A&C	-7.8%	+5.6%				

1st level: <u>subbasins (22)</u> — Uplands sensitive to Crop rotation!

2nd level: HRU (250) — Grassland HRUs area key!

3rd level: Static/dynamic HRUs — Increase static HRUs!

4th level: Limiting HRUs performance Avoid static HRUs in between routing!


Conclusions

- ✓ Participatory processes and modeling for future scenario assessment are crucial aspects for comprehensive assessment of catchments dynamics.
- ✓ Catchments close to cities in Andean region are prone to natural hazards due to intensification of land use and land cover changes.
- ✓ <u>Climatic conditions are too sensitive and variable in small time windows in</u> high altitudinal catchments as Andean-Amazon subbasins
- ✓ Participants are not aware of balance between natural resources demand and environmental implications.
- ✓ The majority of participants expect solutions from the authorities and not
 for their own and local responsibility for the use of resources.
- ✓ In Andean region, the associated crops and rotation sequences with native seeds are key for optimise soil dynamics. Include this into model increases the optimisation path.
- ✓ Fragmented landscape offer more chance to optimise routing but more computational resources are needed.

Thanks!

davidandres.rivas@upm.es anamaria.tarquis@upm.es rolando.celleri@ucuenca.edu.ec

