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Motivation
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• The ensemble spread represents the model uncertainties in 
the ensemble data assimilation (EDA) system. 

• Generally, the under-estimated ensemble spread can cause 
the analysis to ignore the observation.

• This underestimation is also found in the coupled land-
atmospheric modeling system, especially near the surface.

• The under-dispersive soil temperature and moisture can be a 
source of an underestimated ensemble spread of 
temperature and water vapor mixing ratio below the 
planetary boundary layer. 

Fig 1. Schematic diagram of the ensemble spread: under-dispersive ensemble spread (left) and optimal ensemble spread (right).

Fig 2. RMSE and spread (SPRD) of soil temperature (ST) and moisture (SM) at the first soil layer in CTRL DA cycles.
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• We perturb soil temperature (ST) or soil moisture (SM) using a spatially and temporally 
correlated random forcing at each grid point every time steps within the coupled WRF-
Noah LSM system to represent the near-surface uncertainty. 

𝒙𝒊,𝒏𝒆𝒘
𝟏 = 𝒙𝒊

𝟏 + 𝒓𝒊

𝑥𝑖
1: ST or SM at the first soil layer (0 ~ 10 cm), 𝑖: ensemble member

𝑟: Random forcing (−𝜎 ≤ 𝑟 ≤ 𝜎) following Gaussian distribution with zero mean 

(The perturbations sum up to zero so as not to introduce a systematic drift in the model)

❖Additional prescriptions to the SM perturbing: 

1) New SM falls within the respective bounds sets by the wilting point
and the saturation level. 

2) The perturbations in areas under snow cover or with frozen soil are 
set to zero.

* Tuning parameters

Fig 3. (a) original SM, (b) random forcing, and (c) new SM (m3 m-3).

Stochastically Perturbed Parameterization Scheme for the Noah LSM (SPP-Noah LSM)



• The micro-genetic algorithm (micro-GA) is based on 

the survival of the fittest to evolve the best potential 

solution over several generations; it is widely used for 

optimal parameter estimation. 

• We have designed a fitness function using the 
normalized mean squared errors (NMSE) to evaluate 
the interaction between LSM and the planetary 
boundary layer (PBL) in terms of accuracy as:

𝒇𝒊𝒕𝒏𝒆𝒔𝒔 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 = 𝑵𝑴𝑺𝑬 𝒙 +
𝟏

𝒌
σ𝐳=𝟏
𝒌 𝑵𝑴𝑺𝑬 𝒚𝒛

where 𝒙 is ST (K) or SM (m3 m-3), 𝐲 is temperature (K) or water vapor mixing 
ratio (g kg-1), and 𝒛 represents the 850 to 1000 hPa vertical layers (k=7). The 
standard deviation of GFS analysis normalizes each MSE. 

Fig 4. Flowchart of the coupling system of micro-GA and 

SPP-Noah LSM in the coupled WRF-Noah LSM. 

Soil Atmosphere

Optimization of Tuning Parameters
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Tuning parameters OSTP-D OSTP-N OSMP-D OSMP-N

Amplitude 0.13 K 0.01 K 0.0003 m3 m-3 0.0003 m3 m-3

Length scale 2900 km 100 km 250 km 700 km

Time scale 120 s 900 s 900 s 120 s

Table 1. Optimized ST perturbations for daytime and nighttime (OSTP-D, OSTP-N). Same for the SM (OSMP-D, OSMP-N). 

• Diurnal variations of soil variables

• Physical interpretation

✓ 2900 km: Solar radiation (domain size)

✓ 100 km: Soil texture

✓ 250 km: Mesoscale convective system

✓ 700 km: Less convection 

Optimized Tuning Parameters and applications to EDA

❖ Applications of SPP-Noah LSM to Ensemble Kalman Filter (EnKF) assimilating PREPBUFR (conventional data)

Fig 5. Scatter plots of the SPRD and RMSE for (a) ST, (b) SM, (c) temperature at 1000 hPa (T1000), and (d) water vapor mixing ratio at 1000 hPa (Q1000). 

Over-estimated

Under-estimated
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Applications of SPP-Noah LSM in EDA system

Fig 6. The analysis increment (colored contours; positive in red, negative in blue, and zero

in gray) and the background error against GFS analysis (shaded) for temperature (in K) in

(a) CTRL and (b) STP1 and for water vapor mixing ratio (in g kg-1) in (c) CTRL and (d)

SMP1. Results are averaged from 850 hPa to 1000 hPa.

Fig 7. Δ zonal mean spread (STP1-CTRL) and Δ zonal mean RMSE (STP1-CTRL) for

temperature (K) over the land (Top). Δ zonal mean spread (SMP1-CTRL) and Δ zonal mean

RMSE (SMP1-CTRL) for water vapor mixing ratio over the land (Bottom).

Background Error (Shading) & Analysis Increment (Contour)
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Conclusion

• The stochastically perturbed soil temperature and soil moisture can indirectly inflate the 

ensemble background error covariance (BEC) of temperature and water vapor mixing 

ratio below the planetary boundary layer.

• The diurnally variated tuning parameters depicts a reasonable ensemble spread for soil 

temperature and soil moisture. However, the propagation to the atmospheric model is 

weaker than the single (e.g., daytime) tuning parameter. 

• We plan to consider the heterogeneous characteristics of land use categories and soil 

types to improve optimal tuning parameters.  


