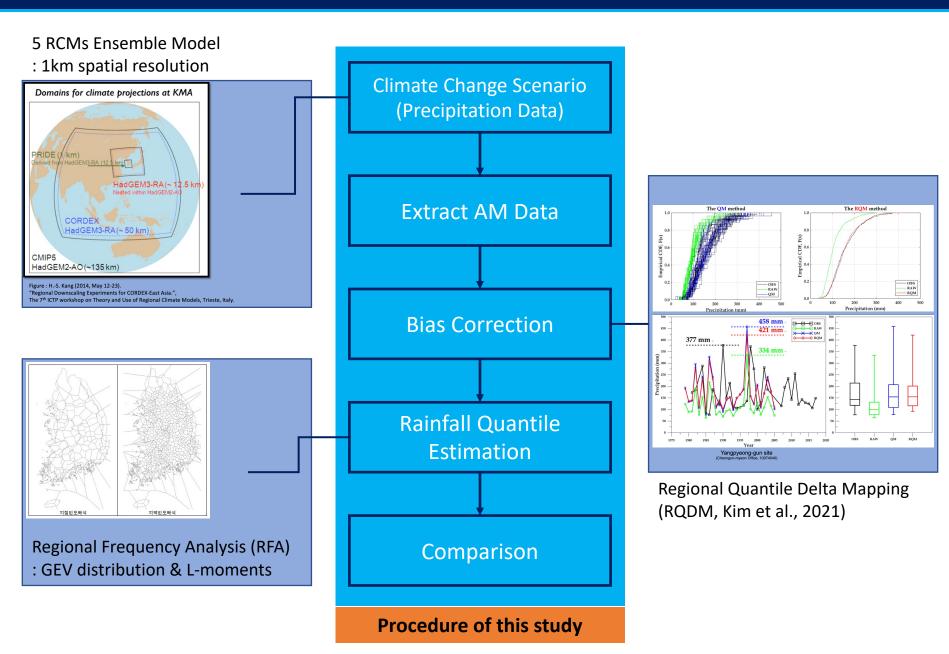


Extreme rainfall quantile estimation based on SSP scenarios: Focusing on the Hangang river basin

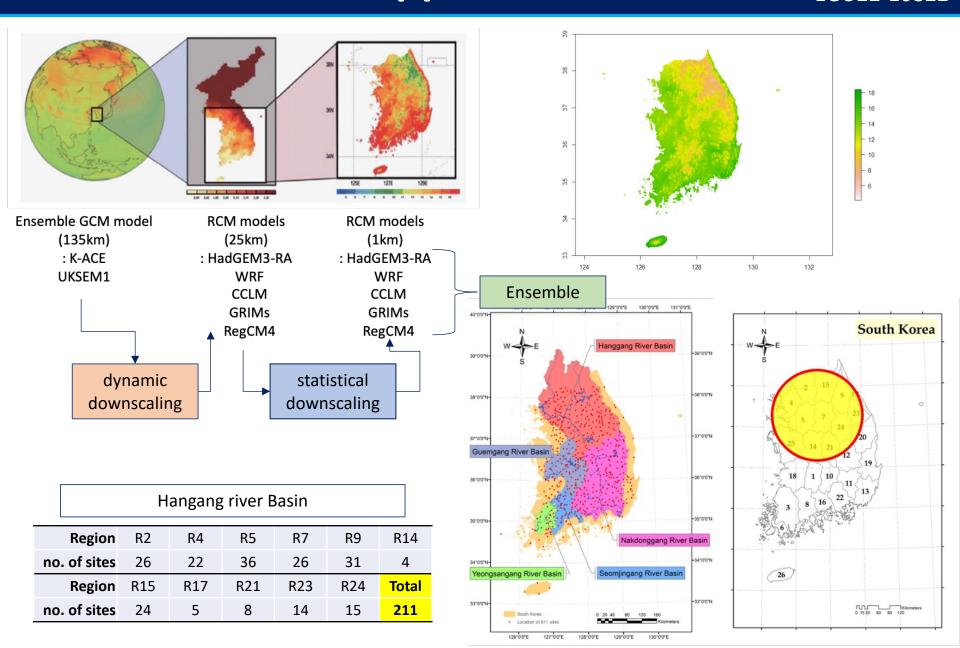
General Assembly 2022

Sunghun Kim¹, Heechul Kim², Gyobeom Kim³, and Jun-Haeng Heo²

¹Institute of Engineering Research, Yonsei University, Seoul, Republic of Korea ²School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea ³Division of Resources and Energy Assessment, Korea Environment Institute, Sejong, Republic of Korea



Floods


Drought

Disaster

Methodology

Application

Results

Historical period (S0: 2000-2019)

Mean value of statistical measures for 211 sites

SSP126

	2	3	5	10	20	30	50	70	80	100	200	300	500
RMSE	67.54	83.62	102.11	126.25	150.44	164.84	183.39	195.89	200.92	209.43	236.68	253.26	274.91
MAE	66.66	82.53	100.65	124.06	147.19	160.78	178.05	189.53	194.12	201.81	226.00	240.37	259.38
ARE	-0.455	-0.472	-0.487	-0.500	-0.509	-0.513	-0.518	-0.520	-0.520	-0.521	-0.523	-0.524	-0.523
RMSE	14.86	16.44	18.38	21.49	25.86	29.25	34.58	38.80	40.64	43.92	55.88	64.17	76.03
MAE	13.14	14.25	15.56	17.43	19.62	21.89	26.09	29.57	31.12	33.89	43.70	50.47	60.10
ARE	-0.090	-0.082	-0.075	-0.067	-0.061	-0.057	-0.051	-0.048	-0.047	-0.044	-0.036	-0.031	-0.024

SSP545

		2	3	5	10	20	30	50	70	80	100	200	300	500
£	RMSE	70.18	85.30	100.64	117.24	129.83	135.35	140.23	142.11	142.55	142.88	140.69	137.22	131.02
Ĺ	MAE	69.15	84.12	99.25	115.50	127.57	132.64	136.73	137.88	137.97	137.62	132.20	125.57	113.21
L	ARE	-0.472	-0.482	-0.482	-0.469	-0.446	-0.428	-0.403	-0.383	-0.375	-0.361	-0.311	-0.297	-0.278
	RMSE	11.38	12.09	11.93	13.23	21.17	29.35	43.08	54.22	59.11	67.90	100.49	123.57	157.40
ı	MAE	9.75	10.14	9.91	10.91	17.60	24.93	37.59	47.87	52.35	60.34	89.38	109.63	138.98
L	ARE	-0.051	-0.040	-0.020	0.012	0.050	0.074	0.108	0.131	0.141	0.158	0.214	0.231	0.249

Results

Future period (S1: 2021-2040 / S2: 2041-2060 / S3: 2061-2080 / S4: 2081-2100)

Mean value of change ratio for 211 sites

	SSP	126	SSP585				
	T=100yr	T=200yr	T=100yr	T=200yr			
SO/OBS	-1.81	-2.27	-1.81	-2.27			
S1/S0	15.78	21.37	-4.41	-3.62			
S2/S0	4.41	4.54	-8.23	-9.05			
S3/S0	-3.42	-4.33	17.93	21.86			
S4/S0	-2.99	-2.25	5.32	6.38			

Conclusion

In this study, we focused on the effects of extreme rainfall based on the SSP scenarios in Hangang river basin, South Korea. In addition, the relative changes in each future period (S1, S2, S3, S4) were compared.

In the **SSP126** scenario of S1 period, the increasing tendency was expected about 16% (T=100yr). In the **SSP585** scenario of S3 period, the increasing tendency was expected about 18% (T=100yr). The largest increase was expected in the **SSP585** scenario of S3 period compared with other cases, however, the largest uncertainty was indicated in this scenario (**SSP585**) and period (S3).

Further studies will be conducted not only on the other major river basins, but also on the changes for the future flood quantiles.

Thank you.

sunghun@yonsei.ac.kr & jhheo@yonsei.ac.kr