Experimental study on the conditions of inclusions capturing during diamond growth in the upper mantle

Nadezda Chertkova*, Anna Spivak*, Anastasiia Burova**, Egor Zakharchenko*, Yuriy Litvin*, Oleg Safonov*, Andrey Bobrov**

*D.S. Korzhinskii Institute of Experimental Mineralogy of RAS

*Geological Faculty, Moscow State University

Russian Science Foundation (20-77-00079)

Modelling the deep Earth

Inclusions in natural diamonds provide unique information about deep-seated mantle minerals and fluids.

Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth's deep mantle

O. Tschauner, ** S. Huang, ** E. Greenberg, ** V. B. Prakapenka, ** C. Ma, ** G. R. Rossman, ** A. H. Shen, ** D. Zhang, **2.5 M. Newville, ** A. Lanzirotti, ** K. Tait **6

Diffraction pattern of IIm+Ice-VII inclusion

EGU22-10849

Experimental methods:

In situ analysis using diamond anvil cell (DAC) technique

High-pressure synthesis in a Bridgman-type apparatus

Studied system: Ilmenite + Olivine + H₂O (14-20 mol.%)

In situ observations

Optical access

Externally heated DAC

Monitoring the state of H₂O phases through transparent diamond anvils

Raman analysis

General Assembly 2022

Phase relations at 1200°C, 6 GPa

IIm₇₅Ol₂₅ + H₂O

 $IIm_{50}OI_{50} + H_2O$

IIm₂₅Ol₇₅ + H₂O

Run products:

Ilmenite + Olivine

Ilmenite + Pyroxene + Humite

Ilmenite + Pyroxene + Humite

Comparison with natural associations

Ice VII inclusions in diamonds and associated phases: (Tschauner et al., 2018)

Specimen	lce-VII volume (ų)	P (GPa)	P _{cor} (GPa)	Coexisting phases	Other phases
GRR1507	33.689(8)	6(1)	7(2)	Ilmenite† 85%	Olivine (Fo94-97),‡ calcite, sellaite
GRR1507	32.40(1)	7.9(1.4)	9(2)	Ilmenite† 81%	

Experiment:

Association of Ilmenite and Olivine in the presence of hydrous fluid in the systems with Ilmenite: Olivine mole ratio ≥ 75: 25. At lower ratio, a reaction with the formation of Pyroxene and Humite phases was observed.

Summary

- A combination of high-pressure techniques was applied for the investigation of mineral associations and H₂O phases, captured as inclusions in diamonds, in the pressure range from 4 to 8 GPa and temperatures from 500°C to 1250°C.
- Experimental results revealed possible reactions of ilmenite, olivine and hydrous fluid with the formation of new phases (pyroxene and humite) in the diamond stability field.
- Obtained data can be used for reconstruction of diamond growth media in the lithosphere.

