

Assessing future extreme rainfall trends through multifractal scaling arguments

A CONUS-wide analysis based on NA-CORDEX model outputs

Stergios Emmanouil¹, Andreas Langousis², Efthymios I. Nikolopoulos³, and Emmanouil. N Anagnostou¹

- ¹ Department of Civil & Environmental Engineering, University of Connecticut, Storrs, CT, USA
- ² Department of Civil Engineering, University of Patras, Patras, Greece
- ³ Department of Mechanical & Civil Engineering, Florida Institute of Technology, Melbourne, FL, USA

Introduction

Problem statement

- Assess the **impacts** of the **evolution of** extreme rainfall events under rapidly changing climatic conditions
- Quantify **future flood risk**

Spatial and temporal evolution of regional extreme rainfall patterns

Challenging to describe due to:i. natural climate variabilityii. local topography

Evaluation of the **frequency of extreme events** from conventional climate model outputs

Demanding due to introduction of epistemic uncertainties

Overarching Goal

Robust assessment of future trends related to extreme rainfall over the entire CONUS, while considering the non-stationary nature of the rainfall process

Using high-resolution rainfall data and an elaborate multifractal framework for IDF estimation

Methods

Framework in-brief

Data

Stage IV

4-km, hourly 2002 – 2019

CORDEX-NA

22-km, hourly 1950 – 2099

Solely WRF and RCP8.5

GFDL-ESM2M

HadGem2-ES

MPI-ESM-LR

Downscaled NA-CORDEX

Parametric Q-Q mapping

Emmanouil et al. (2021)

Calibration: 2011 - 2019

Validation: 2002 - 2010

Extrapolation: $\frac{1979 - 2001}{2020 - 2099}$

Downscaling and bias-correction

Parametric multifractal approach

Emmanouil et al. (2022) and Langousis et al. (2009)

Applied to sequential 10-yr segments

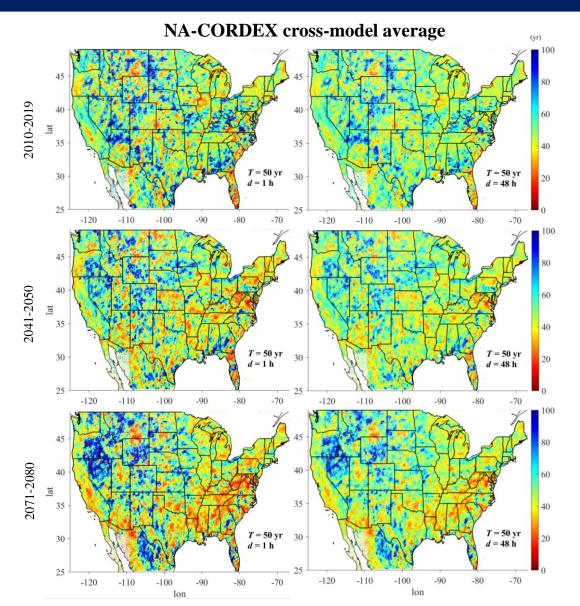
Robust for short records

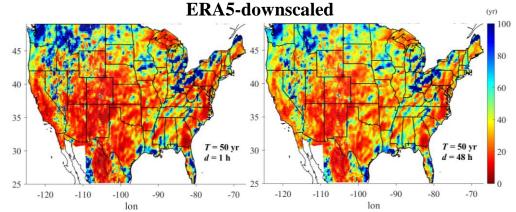
Parameters that vary slowly <u>across</u> (not within) realizations

Evolution of IDF curves

IDF estimates for different time segments

- Validation using historical recordings (1979-2019)
- Various averaging durations, d, and return periods, T

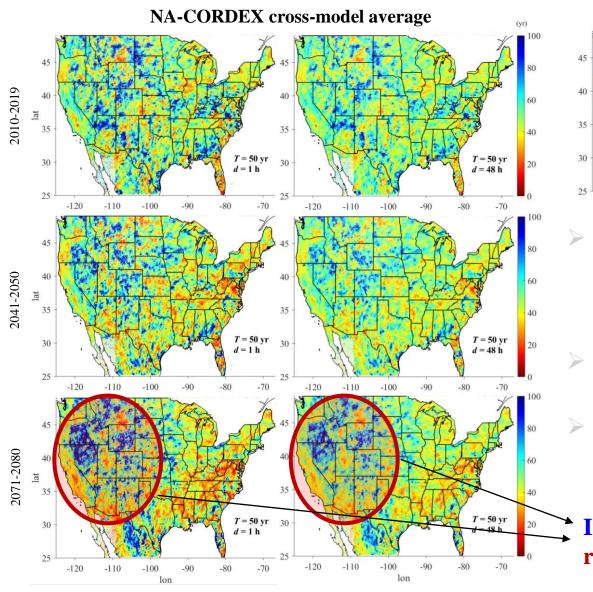

Output

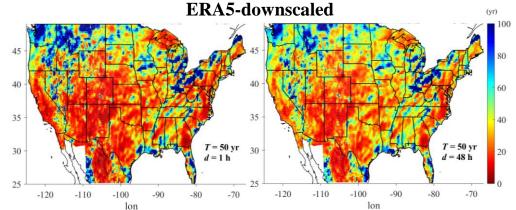

Return period estimates for various times segments

- Multiple climate model outputs
- Using *T*-yr return levels in 1979-1988 as reference

Results

Mapping the evolution of return period levels

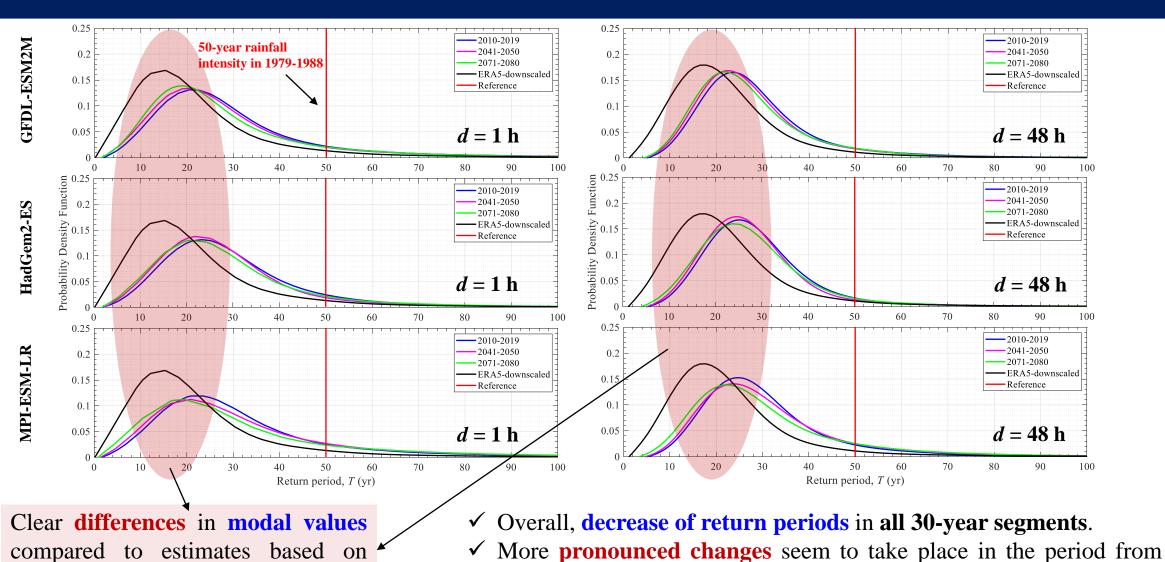




- The **return period estimates** from the downscaled **CORDEX-NA** display **higher spatial variability** compared to those from the **downscaled ERA5** (Emmanouil *et al.*, 2021) in the **historical period** (1979–2019).
- The **erraticity** can be **potentially attributed** to the **lack of dynamic consistency** of climate model simulations.
- The decreasing trends of the return periods in the future (2020–2050 and 2051–2080) seem overall slightly more pronounced.

Results

Mapping the evolution of return period levels


- The return period estimates from the downscaled CORDEX-NA display higher spatial variability compared to those from the downscaled ERA5 (Emmanouil *et al.*, 2021) in the historical period (1979–2019).
- The erraticity can be potentially attributed to the lack of dynamic consistency of climate model simulations.
- The decreasing trends of the return periods in the future (2020–2050 and 2051–2080) seem overall slightly more pronounced.

Increasing trends over the **Rockies** and certain **western regions** (e.g., Nevada and Oregon) **regardless of** *d*.

Results

downscaled ERA5 data

Overall trends in return period levels

1979 to 2019.

Summary and Conclusions

▶ Limited knowledge on the evolution of extreme precipitation patterns
✓ Under the influence of climate change.
✓ At spatiotemporal resolutions suitable for hydrological modeling.
✓ Considering the non-stationarity of rainfall as a process.

- ✓ Reveal future infrastructure vulnerabilities.
- ✓ Wide range of characteristic temporal scales and exceedance probability levels.
- - ✓ Derived using CORDEX-based, gridded (4-km), hourly precipitation estimates, covering the entire CONUS for a period of 120 years.

Main findings and concluding remarks

- ✓ **Return period estimates** obtained from **CORDEX-NA** data display **high spatial variability**
 - Potentially attributed to the lack of dynamic consistency of climate model simulations.
- ✓ On average, reduced return periods in all 30-year segments studied.
- ✓ More pronounced changes seem to take place in the period from 1979 to 2019.
- strategically planned future infrastructure could encapsulate all possible ✓ **Rate of changes** in future IDF estimates ⇒ outcomes for the remainder of the century

Selected Bibliography

- Emmanouil, S., Langousis, A., Nikolopoulos, E. I., & Anagnostou, E. N. (2020). Quantitative assessment of annual maxima, peaks-over-threshold and multifractal parametric approaches in estimating intensity-duration-frequency curves from short rainfall records. *Journal of Hydrology*, **589**, 125151. https://doi.org/10.1016/j.jhydrol.2020.125151
- Emmanouil, S., Langousis, A., Nikolopoulos, E. I., & Anagnostou, E. N. (2021). An ERA-5 Derived CONUS-Wide High-Resolution Precipitation Dataset Based on a Refined Parametric Statistical Downscaling Framework. *Water Resources Research*, **57**(6), 1–17. https://doi.org/10.1029/2020WR029548
- Langousis, A., Veneziano, D., Furcolo, P., & Lepore, C. (2009). Multifractal rainfall extremes: Theoretical analysis and practical estimation. *Chaos, Solitons and Fractals*, **39**(3), 1182–1194. https://doi.org/10.1016/j.chaos.2007.06.004
- Mearns, L. O., McGinnis, S., Korytina, D., Arritt, R., Biner, S., Bukovsky, M., et al. (2017). The NA-CORDEX dataset, version 1.0. NCAR Climate Data Gateway. Boulder (CO): The North American CORDEX Program, 10.

Thank you!

Contact: <u>stergios.emmanouil@uconn.edu</u>