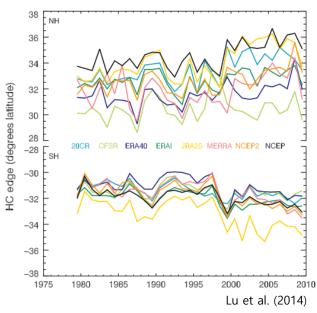


Hemispheric asymmetry of the Hadley-cell change in CO₂ removal scenario

Seoyeon Kim, <u>Yeong-Ju Choi</u>, Seok-Woo Son, Soon-Il An, Sang-Wook Yeh, Seung-Ki Min, Jong-Seong Kug, and Jongsoo Shin

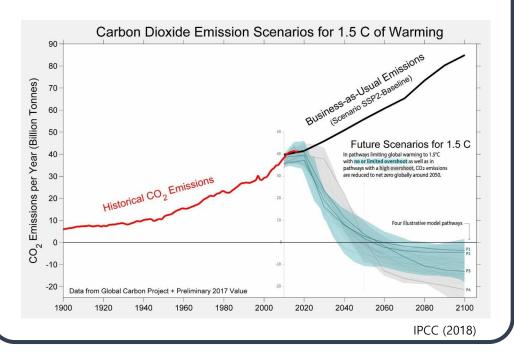


Introduction

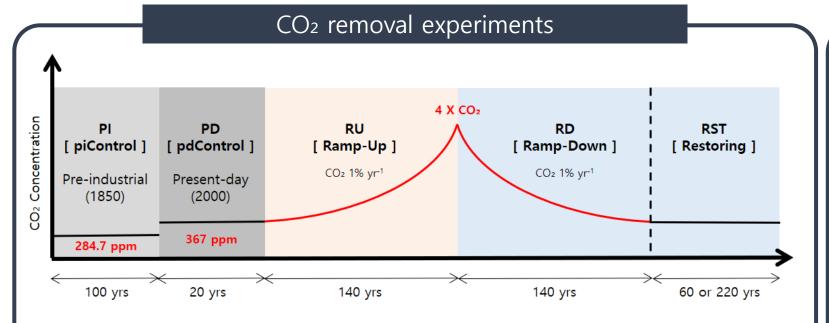
The Hadley-cell (HC) edge

• The Hadley circulation (HC) shifts poleward in response to the increasing CO₂ in observations and climate models.

[Reanalysis]



[Climate Projection]


Reversibility of the climate system

• For effective climate mitigation, knowledge of the climate system responses and reversibility to CO₂ removal is essential.

Does HC edge exhibit the reversibility when CO₂ increases and then <u>decreases?</u>

Data and Methods

Data	Institution	Model	Ensembles	Resolutions (nlat X nlon X nlev)	Initial CO2 concentration
CESM-LE	NCAR	CESM 1.2.2	28 ensesmbles	192 X 288 X 19	367 ppmv (2000 year)
CMIP6	CSIRO	ACCESS-ESM1-5	r1i1p1f1	144 X 192 X 19	284.7 ppm (1850 year)
	CCCma	CanESM5	r1i1p2f1	64 X 128 X 19	
	NCAR	CESM2	r1i1p1f1	192 X 288 X 19	
	NOAA-GFDL	GFDL-ESM4	r1i1p1f1	180 X 288 X 19	
	MIROC	MIROC-ES2L	r1i1p1f2	64 X 128 X 19	
	NCC	NorESM2-LM	r1i1p1f1	96 X 144 X 19	
	MOHC	UKESM1-0-LL	r1i1p1f2	64 X 128 X 19	

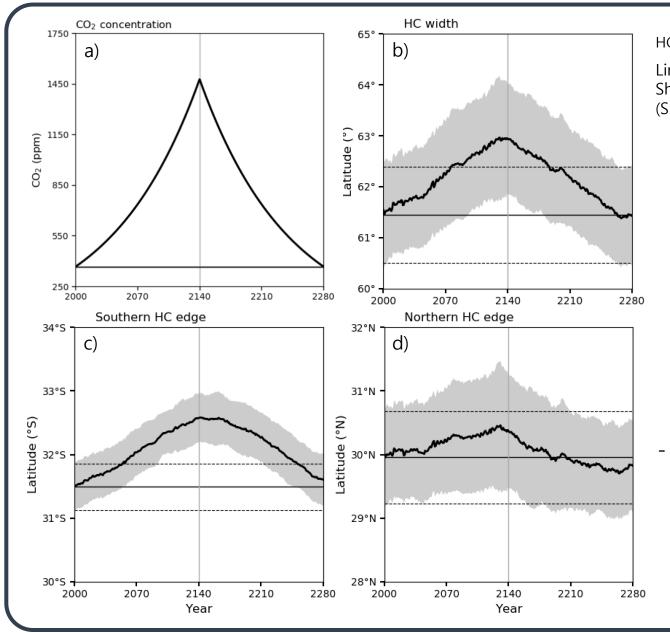
HC width & edge

$$\psi 500 = \frac{2\pi a \cos\varphi}{g} \int_{10\text{hPa}}^{500\text{hPa}} \overline{[v]} \, dp$$

HC edge

; the zero-crossing latitude of 500hPa mass streamfunction

HC width


; the range of latitude between Southern and Northern HC edges

Global Dryness Index

; the frequency of the occurrence of dry months defined as a month where the monthly rainfall is less than 0.1 mm/day (Lau and Kim, 2015)

3

Changes of Hadley cell edges to the CO2 forcing

HC width ≡ SH HC edge ~ NH HC edge

Lines: ensemble mean

Shadings: 1-std ranges across the ensembles

(Smoothed with a 11-yr running mean)

While the HC-width change is symmetric in response to the increase and decrease of CO₂, the HC edges in southern and northern hemispheres exhibit lessand over-recovery after CO₂ removal.

What controls the HC responses to the CO2 forcing - Baroclinicity

Baroclinicity criterion

$$C = \frac{f^2}{\beta g H} \frac{(U_{500} - U_{850})}{(\theta_{500} - \theta_{850})/\Theta_0}$$

(between $20 \sim 40^{\circ} Lat$)

Philips (1954)

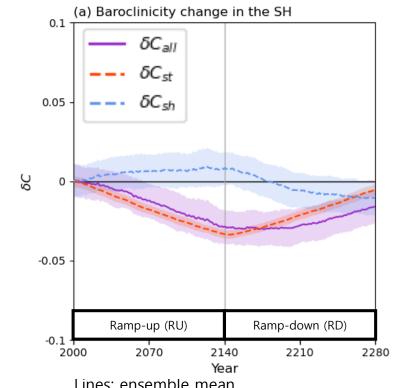
$$\delta A = A_{EXP} - A_{PD}$$

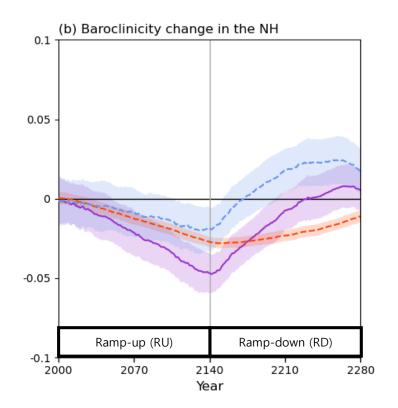
$$\delta C_{all} = \delta \left[\frac{f^2}{\beta g H} \frac{(U_{500} - U_{850})}{(\theta_{500} - \theta_{850})/\Theta_0} \right]$$

if
$$\delta(U_{500} - U_{850}) = 0$$
,

$$\delta C_{st} \approx -\frac{f^2}{\beta g H} \frac{(U_{500} - U_{850})_{PD} \delta(\theta_{500} - \theta_{850})}{(\theta_{500} - \theta_{850})_{PD}^2 / \Theta_0}$$

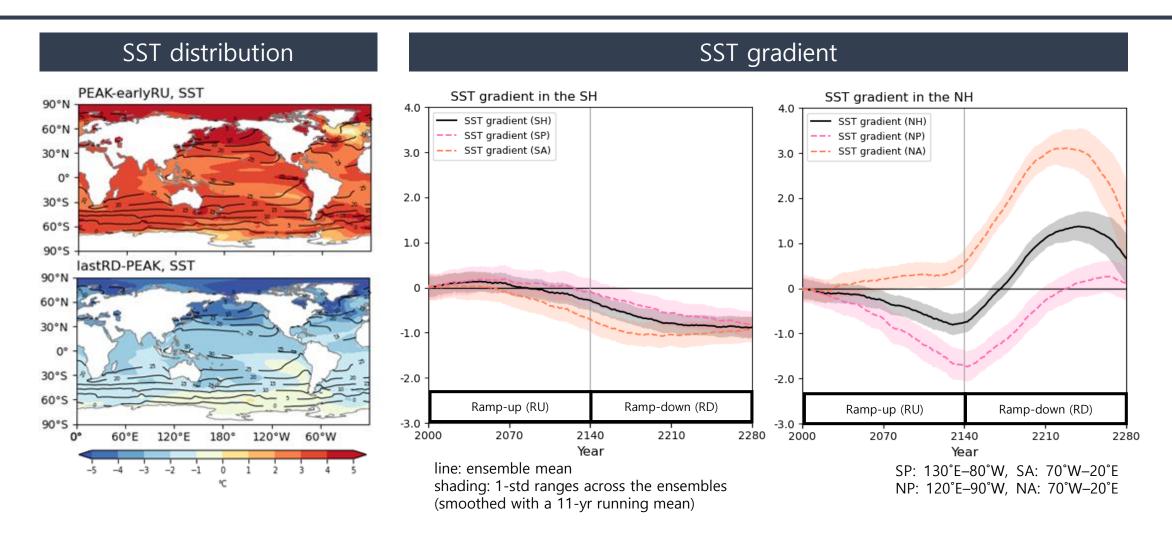
if
$$\delta(\theta_{500} - \theta_{850}) = 0$$
,


$$\delta C_{sh} = \frac{f^2}{\beta g H} \frac{\delta (U_{500} - U_{850})}{(\theta_{500} - \theta_{850})_{PD}/\Theta_0}$$


decreasing baroclinicity increasing static stability decreasing wind shear

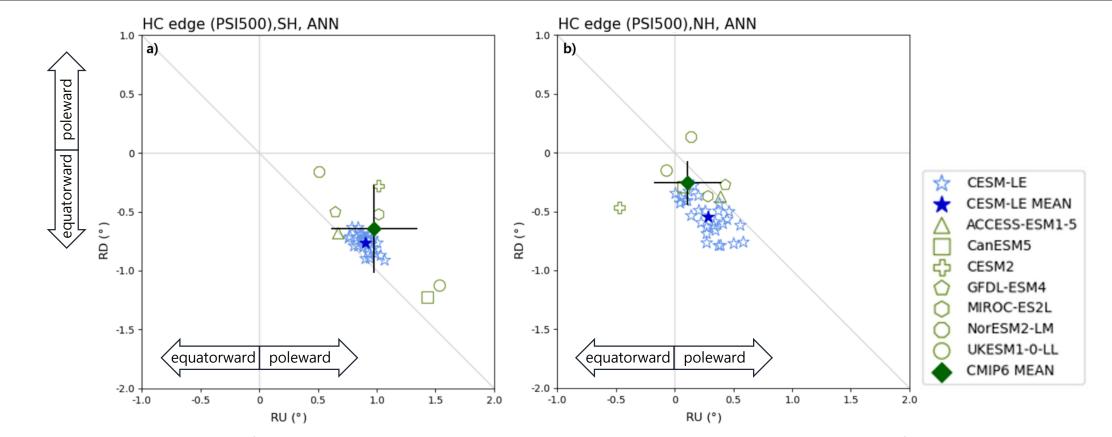
HC cell poleward shifts

Baroclinicity response


Lines: ensemble mean

Shadings: 1-std ranges across the ensembles

(Smoothed with a 11-yr running mean)


While the baroclinicity due to the static stability monotonically changes in both hemisphere, the changes of the baroclinicity due to the vertical wind shear exhibits a distinct hemispheric asymmetry.

What controls the HC responses to the CO2 forcing - SST

The SST gradient over North Atlantic may be relevant to a rapid recovery of the vertical wind shear in NH, resulting in the hemispheric asymmetry of the HC-edge changes.

Generalize the results of the CESM-LE with CMIP6 models

- The multi model mean of the CMIP6 models also shows the poleward and equatorward shifts during RU and RD periods, respectively.
- The linear relationship between the RU and RD periods implies the symmetric change of HC edge. However, its northern counterpart does not show the relationship, which means the irreversible change of the NH HC edge.

Conclusions and Discussion

The poleward shifted HC edges in both hemispheres in warming climate do not return to their present-day states after CO₂ removal with a hemispheric asymmetry.

The irreversible HC edge changes are associated with wind shear change induced by the irreversible ocean change after CO₂ removal.

Multi model mean of CMIP6 also shows the poleward and equatorward shift during RU and RD period.