High-resolution topographic reconstruction from archival photographs in the Mont-Blanc massif estimating historical rockwall erosion rates and glacial volume changes

Daniel Uhlmann¹, Michel Jaboyedoff¹, Ludovic Ravanel², Marc-Henri Derron¹, Joelle Helene Vicari¹, Charlotte Wolff¹, Li Fei¹, Tiggi Choanji¹ and Carlota Gutierrez¹

Context

Grand Pilier d'Angle and Mont-Blanc (4,810 m)

l'Aiguille du Midi, (3,842 m)

- Mont-Blanc massif is the highest mountain range in western Europe
- Contains large, steep, and vertical rock walls, up to 1200 m in height, which are largely within the cryosphere, and subject to permafrost degradation
- Rockfall and erosion rate studies have been largely limited to the modern era of LIDAR and other remote-sensing based reconstructions
- The project aims to enlarge the timescale of measurements for erosion rate on the great rock walls of the MBM
- The project also seeks to qualify and quantify the volumetric change of suspended glaciers

- 35mm 8x10inch glass plates
- Scanned negatives and prints
- Largely missing metadata
 - Precise date
 - Equipment used
- No fiduciary marks
- Often unknown reproduction parameters
- Lack of access to original materials

Geographic Context

Grand Pilier d'Angle (4,243 a.s.l.)

45.828160° N, 6.878423° E

Grand Pilier d'Angle (4,243 m)

Metashape Workflow: GPA

SFM-generated point cloud, images from 1952

Cloud Compare Workflow

- Registration via point picking (max 1 m error at each point)
- 2) Iterative fine registration until RMS error is less than 1 (ideally 0.3 0.5)
- 3) M3C2 Algorithm.
- Error estimation and model quality estimation with M3C2 model

Rockfall identification and volume estimation

Annual erosion rate of Grand Pilier d'Angle, 1952-2021: 3.39 mm/a

Discussion

- Error sources difficult to quantify
 - Source images
 - Reproduction
 - SFM modeling
- Erosion rates are a result of large time-spans
- SFM-derived point clouds will contain inherent error, warping, and other defects which limit base threshold of rockfall or landslide size identification.
- Standardization of SFM-based methods is needed
- Treatment of base images can greatly affect output data and resolution
- With a minimum of 4 high-quality archival photographs, erosion rate can be estimated

The next steps...

