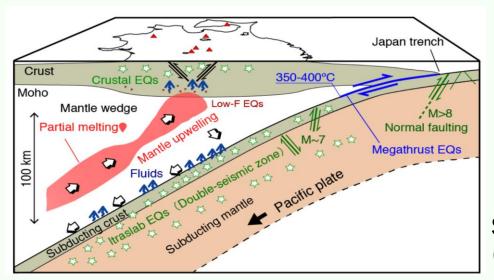
EGU 2022 SM8.1


Time-varying stick-slip behaviors described by dehydration kinetics of gypsum

Mikihiro KAWABATA (Tohoku University)

- Y. SASAKI (Kaijo Junior and Senior High School)
- M. IWASAKI (Dia Consultants Co., Ltd)
- R. SHIRAISHI, J. MUTO, H. NAGAHAMA (Tohoku University)

Backgrounds and Our purpose

Intermediate and deep earthquakes

Due to dehydration of hydrous minerals?

Schematic model of subduction zone (Nakajima, titech)

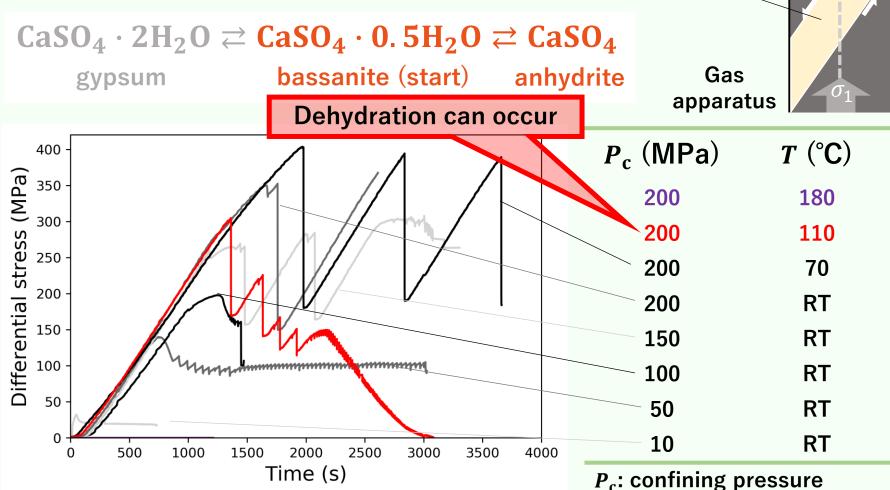
Mechanically

Pore fluid pressure (P_f)

Reduction of strength

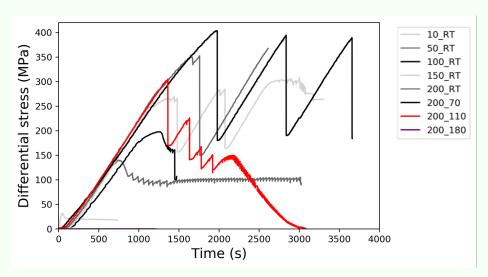
Chemically

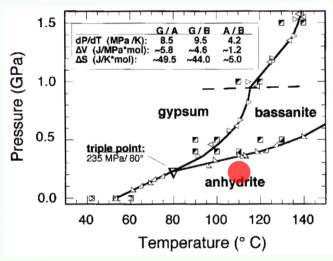
Reaction kinetics


Time dependence

Time evolution of pore fluid pressure (P_f)

35°


gouge: bassanite (dehydrated gypsum), undrained



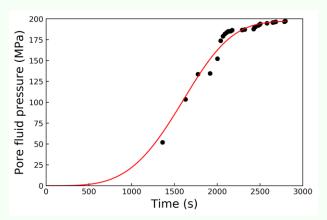
Differential stress vs. time

RT: room temp. (20~25 °C)

Reduction of mechanical strength

Differential stress vs. time

Phase diagram (Mirwald, 2008)


Under 200_{MPa} and 110_℃...

 $\begin{array}{ccc} \text{CaSO}_4 \cdot 2\text{H}_2\text{O} \rightleftarrows \text{CaSO}_4 \cdot 0.5\text{H}_2\text{O} \rightleftarrows \text{CaSO}_4 \\ & \text{bassanite} \\ & \text{(start)} \end{array} \quad \text{anhydrite}$

Shortening of recurrence intervals

Anhydrite is the most stable

- Dehydration of bassanite to anhydrite
- Reduction of strength due to pore fluid pressure

Pore fluid pressure plot

Avrami theory

$$X = 1 - \exp(-kt^n)$$

X: reaction ratio

k : reaction rate (s-n)
t : elapsed time (s)

n : Avrami exponent

The cause of $P_{\rm f}$: dehydration

- 1 More dehydration, higher P_f ... Assuming linearity between P_f and dehydration degree
- 2 Time variation of dehydration degree

Reaction kinetics

$$P_{\mathrm{f}} = A\{1 - \exp(-kt^n)\}$$
 A: constant (MPa)

$$P_{\rm f} = 197.3701\{1 - \exp(-2.7091 \times 10^{-13} \times t^{3.8791})\}$$

Time evolution of pore fluid pressure can be described based on reaction kinetics.