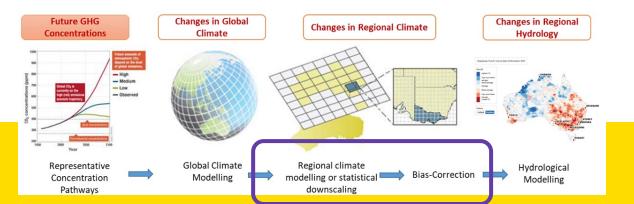
# Evaluating dynamical downscaling and bias correction methods for hydrological impact assessments

### Elisabeth Vogel

University of New South Wales, Sydney, Australia

J. Peter, U. Bende-Michl, C. Wasko, W. Sharples, L. Wilson, P. Hope, A. Dowdy, J. Roussis, V. C. Duong, C. Donnelly, Z. Khan, S. Srikanthan


Acknowledgements: L. Marshall, F. Johnson, A. Sharma, R. Mehrotra, S. Lange

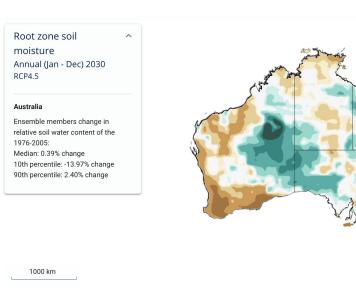


## Hydrological impact studies

- Climate change is predicted to affect the availability of water resources, including changes in hydrological extremes, such as drought or flooding risks
- Hydrological impact studies are typically based on hydrological models that are forced with outputs from global climate models
- Generally, global climate models are run at relatively coarse resolution

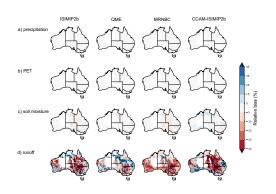
   coarser than what would be required to force hydrological models –
   and can have systematic biases
- A number of downscaling and bias correction methods have been developed to postprocess GCM outputs to be used in impact models

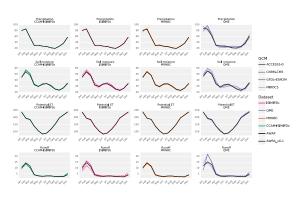







## Australian Water Outlook – Hydrological Projections


- The Australian Bureau of Meteorology has released a National Hydrological Projections service
- The new service provides information and data on hydrological change across Australia – based on two emission scenarios, four GCMs and the AWRA-L hydrological model
- GCM data post-processed using one dynamical downscaling approach (the CCAM regional climate model) and three statistical bias correction methods:
  - **ISIMIP2b** (Hempel et al., 2013)
  - QME (Dowdy, 2019)
  - MRNBC (Johnson and Sharma, 2012; Mehrotra and Sharma, 2016)
  - → Evaluation in terms of their suitability for hydrological impact studies

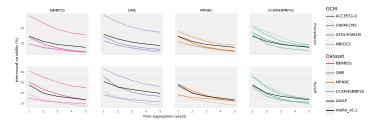

#### https://awo.bom.gov.au/products/projection

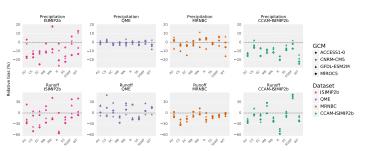




# Evaluation framework for climate change impacts studies







## **Evaluation approach:**

- Evaluation period: 1976-2005
- Comparison of:
  - 1. hydrological simulations using downscaled and bias corrected climate inputs
  - 2. historical reference simulation (using observed climate data AWAP)
- Evaluation of: precipitation, potential evapotranspiration, soil moisture, runoff

#### **Evaluated statistics:**

- Mean (annual, seasonal)
- Climatology
- Inter-annual variability
- Temporal auto-correlation
- Extreme indices (drought, flooding risk)





| Statistical feature          | Variable group          | ISIMIP2b   | MRNBC      | QME        | CCAM-ISIMIP2b |
|------------------------------|-------------------------|------------|------------|------------|---------------|
| 1 - Mean                     | Climate forcings        | 9.7        | <u>8.4</u> | 8.6        | 7.4           |
| 2 - Climatology              | Climate forcings        | 8.1        | 7.2        | 12.5       | <u>6.1</u>    |
| 3 - Inter-annual variability | Climate forcings        | 9.7        | 6.4        | 8.5        | 9.4           |
| 4 - Lag-1 correlation        | Climate forcings        | 9.7        | 5.5        | 8.9        | 9.9           |
| 5 - Wet day frequency        | Climate forcings        | 11.5       | <u>5.1</u> | 8.5        | 8.9           |
| 6 - Extreme percentiles      | Climate forcings        | 11.4       | 6.9        | <u>5.3</u> | 10.3          |
| 7 - Multi-annual drought     | Climate forcings        | 9.0        | 7.0        | 9.2        | 8.7           |
| 8 - P-Tmax cross correlation | Climate forcings        | 7.5        | 7.4        | 7.7        | 11.5          |
| 9 - Change signal            | Climate forcings        | <u>7.0</u> | 6.6        | 7.2        | <u>13.2</u>   |
| 1 - Mean                     | Water balance variables | 9.4        | 7.4        | 9.7        | 7.6           |
| 2 - Climatology              | Water balance variables | 9.0        | 6.8        | 10.7       | 7.5           |
| 3 - Inter-annual variability | Water balance variables | 9.1        | 6.9        | 8.6        | 9.3           |
| 4 - Lag-1 correlation        | Water balance variables | 9.5        | 6.4        | 9.0        | 9.1           |
| 5 - Extreme percentiles      | Water balance variables | 10.0       | 7.5        | 7.7        | 8.9           |
| 6 - Multi-annual drought     | Water balance variables | 9.5        | 7.3        | 8.8        | 8.4           |



## **Key findings**

- Low/zero biases in climate forcings do not mean low biases in hydrological impacts → hydrological impact studies require evaluation of hydrological output variables
- Multi-variate and multi-time scale bias correction (MRNBC) performed best in reducing biases in hydrological output variables
- Dynamical downscaling combined with bias correction is useful to reproduce realistic spatial and temporal patterns but may change the climate change signal and can reduce estimates of uncertainty
- Access of the Bureau of Meteorology's Hydrological Projections data: awo.bom.gov.au
  - Underlying data also available via a data collection please get in touch, if you are interested in using them



# Thank you!

If you have any questions please feel free to get in touch:

Elisabeth Vogel

e.vogel@unsw.edu.au

