
# Identification and characterization of vegetation loss during the last 50,000 years in Beringia

## Does the loss of the Pleistocene steppe tundra induce plant taxa loss?



**Courtin Jérémy<sup>1</sup>**, Inger Alsos<sup>2</sup>, Boris Biskaborn<sup>1</sup>, Bernhard Diekmann<sup>1</sup>, Yongsong Huang<sup>3</sup>, Youri Lammers<sup>2</sup>, Martin Melles<sup>4</sup>, Luidmila Pestryakova<sup>5</sup>, Luise Schulte<sup>1</sup>, Kathleen Stoof-Leichsenring<sup>1</sup>, and Ulrike Herzschuh<sup>1,6,7</sup>





<sup>2</sup>The Arctic University Museum of Norway, UiT The Arctic University of Norway, Tromsø, Norway <sup>3</sup>Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, USA

<sup>4</sup>Institute of Geology and Mineralogy, University of Cologne, Cologne, German

<sup>5</sup>Department of Geography and Biology, University of Yakutsk, Yakutsk, Russia <sup>6</sup>Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, Germany

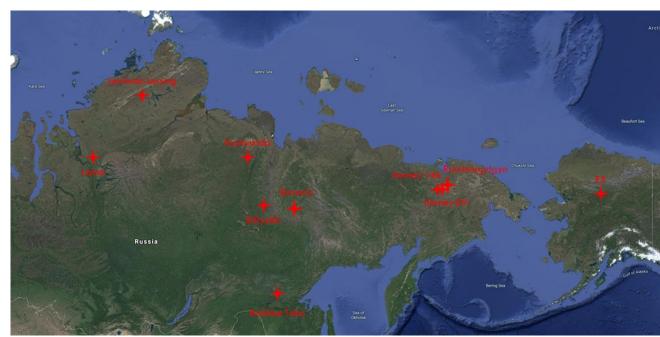
<sup>7</sup>Institute of Biology and Biochemistry, University of Potsdam, Potsdam-Golm, Germany

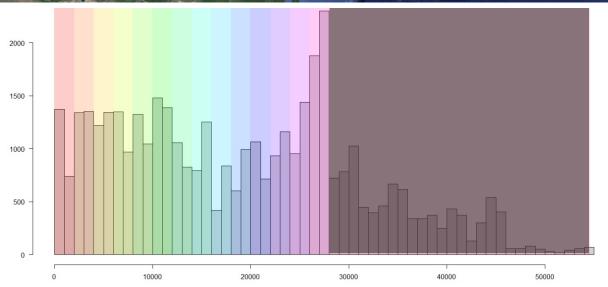


### CONTEXT



- With ongoing climate change: extinction events
  - Impact all Eukaryota groups worldwide<sup>1</sup>
  - Plants are also impacted (even in the arctic) $^2$  + similar proportion than mammals $^3$
- Pleistocene / Holocene: major climatic change
  - Loss of Pleistocene steppe-tundra<sup>4</sup> + extinction event (megafauna)<sup>5</sup>
  - Extinction is not supposed to be group specific<sup>2</sup> + megafauna: keystone taxa<sup>6</sup>
  - No extinction of plant reported so far<sup>7</sup> (due to methodological biases)


#### AIMS:

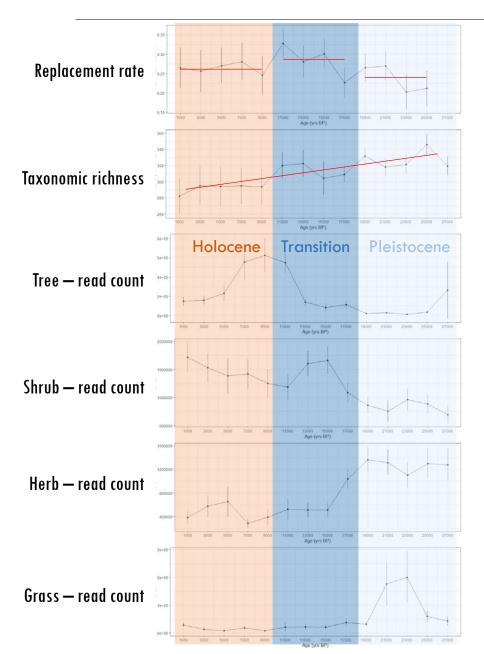

- Improve detection of rare taxa with sedaDNA proxies from lake sediments
- Identify potential extirpation and extinction events
- Characterise the potential loss

work in progress

MATERIAL








| Cores            | Age       |
|------------------|-----------|
| Bolshoe Toko     | 35kyrs BP |
| Levinson Lessing | 55kyrs BP |
| Ilerney 16KP     | 54kyrs BP |
| Ilerney EN18208  | 28kyrs BP |
| Bilyakh          | 50kyrs BP |
| Lama             | 50kyrs BP |
| Kyutyunda        | 50kyrs BP |
| E5               | 30kyrs BP |
| Emanda           | 50kyrs BP |
| Rauchuagytgyn    | 30kyrs BP |

9 lake sediment cores Previous Pleistocene steppe-tundra Covering last  $\sim$ 50,000 years Investigate the last  $\sim$ 28,000 years

## Work in progress MAIN RESULTS





- ~60% of plant taxa are present in every time slice -> core community
- Composition shift: Pleistocene steppe-tundra to Holocene taiga
- Steady decrease in plant richness
- Stable Pleistocene / unstable transition / less stable Holocene

121 taxa absent from modern time slice -> extirpated Average extinction rate per time slice:  $0.95 \text{ E/MSY} > \text{background extinction rate } (0.05 \text{ to } 0.35 \text{ E/MSY})^{9}$ 



Reappearance rate

3 extinction events Last Glacial maximum Pleistocene / Holocene Mid Holocene

Match megafauna extinction events<sup>8</sup>



## Does the loss of the Pleistocene steppe tundra induce plant taxa loss?

- Subcontinental plant taxa loss identified and quantified
- Happen at the transition to the Pleistocene to Holocene
- In parallel to steppe tundra disappearance & megafauna extinction



THANK YOU







- After DNA extraction + metabarcoding (trnL g/h) + OBITools 3 pipeline: work with all ASVs >90%
- DNA databases: modern taxa. To investigate extinction, we look at taxa not present in databases:
- 100% ASVs: assigned at 100% to modern taxon / Candidate ASVs: assigned 90%>ASV>100%: to modern taxon
- Work with ASVs with sufficient reads (>100 reads)
- From ASVs co-occurrence patterns: build communities. Assume that taxa are part of communities
- Each community has only unique taxa merge unique assignments per community to identify 474 potential taxa
- We kept most of 100% signal and reduce the candidate ASVs one with a stringent method
- Potential extinct taxa are in the candidate portion absent from the modern time slice

|         | Starting (min 10 samples) |      | >100 reads |       | Community > 5 ASVs |            |       | Different assignments |            |       |      |            |
|---------|---------------------------|------|------------|-------|--------------------|------------|-------|-----------------------|------------|-------|------|------------|
| Туре    | Total                     | 100% | candidates | Total | 100%               | candidates | Total | 100%                  | candidates | Total | 100% | candidates |
| Total   | 21977                     | 556  | 21424      | 5302  | 475                | 4827       | 4957  | 409                   | 4548       | 474   | 340  | 134        |
| Percent |                           | 2.5  | 97.5       |       | 8.9                | 91         |       | 8.3                   | 91.7       |       | 72   | 28         |

## **BIBLIOGRAPHY**



<sup>1</sup>Cowie, R.H., Bouchet, P. and Fontaine, B. The Sixth Mass Extinction: fact, fiction or speculation?. *Biol Rev* 97: 640-663 (2022). https://doi.org/10.1111/brv.12816

<sup>2</sup>Humphreys, A.M., Govaerts, R., Ficinski, S.Z. *et al.* Global dataset shows geography and life form predict modern plant extinction and rediscovery. *Nat Ecol Evol* **3**, 1043–1047 (2019). https://doi.org/10.1038/s41559-019-0906-2

<sup>3</sup>Brummitt, N. A., Bachman, S. P., Griffiths-Lee, J. *et al.* Green plants in the red: A baseline global assessment for the IUCN sampled Red List Index for plants. *PloS one 10*(8), e0135152 (2015). https://doi.org/10.1371/journal.pone.0135152

<sup>4</sup>Guthrie, R. D. Origin and causes of the mammoth steppe: a story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. *Quat Sci Rev* 20, 549–574 (2001). https://doi.org/10.1016/S0277-3791(00)00099-8

<sup>5</sup>Johnson, C. N. Ecological Consequences of Late Quaternary Extinctions of Megafauna. *Proceedings: Biological Sciences* 276, no. 1667 2509–19 (2009). https://doi.org/10.1098/rspb.2008.1921

<sup>6</sup>Galetti, M., Moleón, M., Jordano, P., et al. Ecological and evolutionary legacy of megafauna extinctions. *Biological Reviews*, 93(2), 845-862 (2018). https://doi.org/10.1111/brv.12374

<sup>7</sup>Jackson, S T, and C Weng. Late quaternary extinction of a tree species in eastern North America. *Proceedings of the National Academy of Sciences of the United States of America* vol. 96,24:13847-52 (1999). https://doi.org/10.1073/pnas.96.24.13847

<sup>8</sup>Murchie, T.J., Monteath, A.J., Mahony, M.E. *et al.* Collapse of the mammoth-steppe in central Yukon as revealed by ancient environmental DNA. *Nat Commun* 12, 7120 (2021). https://doi.org/10.1038/s41467-021-27439-6

<sup>9</sup>De Vos JM, Joppa LN, Gittleman JL et al. Estimating the normal background rate of species extinction. *Conserv Biol* Apr;29(2):452-62 (2015). https://doi.org/10.1111/cobi.12380