

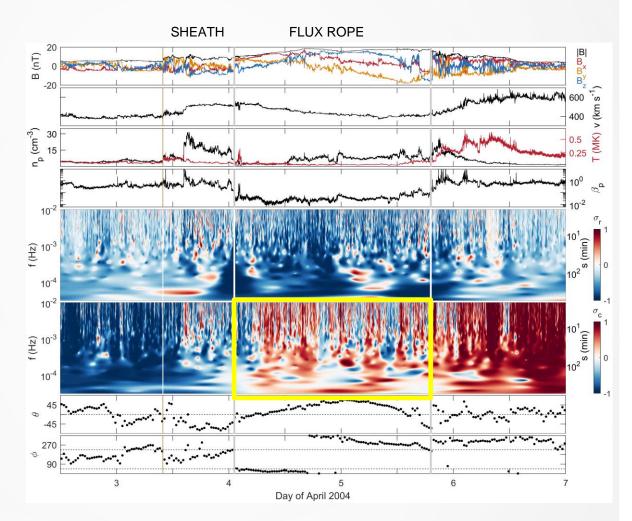
Cross helicity of coronal mass ejections

Simon Good,¹ Lauri Hatakka,¹ Matti Ala-Lahti,^{2,1} Juska Soljento,¹ Adnane Osmane¹ and Emilia Kilpua¹

ST1.9, EGU-11274, 23 May 2022, 16:26-16:32, Room 1.34

¹ Department of Physics, University of Helsinki, Finland

² Department of Climate and Space Sciences and Engineering, University of Michigan, USA



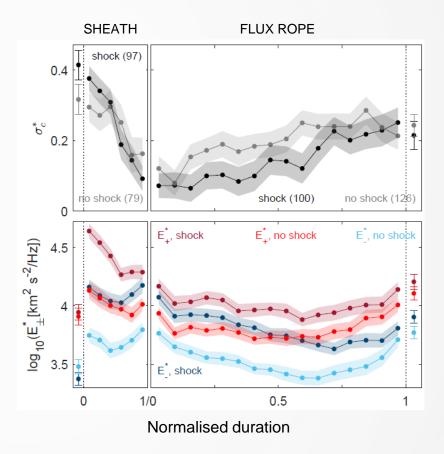
ICME cross helicity: an example event

 σ_c measures the balance of power between Alfvénic wave packets propagating parallel and anti-parallel to the background **B** field:

$$\sigma_{\rm c} = \frac{E_+ - E_-}{E_+ + E_-}$$

- Solar wind is well known to be imbalanced (|σ_c| → 1) in the anti-sunward direction. What about ICME plasma?
- Morlet wavelet analysis used to find σ_c at $10^{-3} 10^{-2}$ Hz in 226 ICMEs observed by the *Wind* spacecraft, 1995-2015
- ICME flux ropes tend to have patchy σ_c with a low globally averaged value

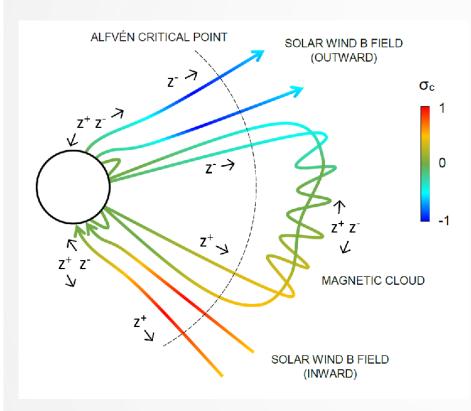
Superposed epoch analysis


All events

SHEATH FLUX ROPE 0.36 *6° 0.24 0.12 $\log_{10}({\rm E}_{\pm}^{*} {\rm [km}^2 \, {\rm s}^{-2} / {\rm Hz}])$ 0 1/0 0.5 Normalised duration

• ICMEs represent a local depression in $\sigma_{ m c}$

• $\sigma_{\rm c}$ low in value but still everywhere positive (anti-sunward)


Shock / no shock

- E_{\pm} amplified then falls; greater relative rise and fall of E_{-} causes the σ_c trend
- Greater E_+ amplification in shock-associated events, but σ_c similar

Balanced σ_c in ICMEs: possible origins

The result of a closed field structure in the corona? (Adapted from <u>Good et al. 2020</u>)

- Closed global field structure in the corona, which carries a balanced population of fluctuations across the Alfvén critical point? (cf. open solar wind field lines)
- 2. Radial evolution in the turbulence as seen in the solar wind, but more pronounced in ICMEs?
- 3. Velocity shear locally adding equal power to z⁺ and z⁻ fluctuations, lowering |σ_c|? (perhaps more likely in sheaths than flux ropes) → please see talk by Juska Soljento on Friday (EGU22-11945) for more details!

This study accepted by MNRAS, now available at: http://arxiv.org/abs/2205.07751

UNIVERSITY OF HELSINKI Department of Physics