Aggregation in the Dendritic Growth Layer: A statistical analysis combining multi-frequency Doppler and polarimetric Doppler cloud radar observations

Leonie von Terzi¹, José Dias-Neto², Davide Ori¹, Alexander Myagkov³, Stefan Kneifel¹

¹ Institute of Geophysics and Meteorology, University of Cologne, Germany ² Department of Geosciences and Remote Sensing, Delft University of Technology, Netherlands ³ Radiometer Physics GmbH, Meckenheim, Germany

- DGL:
 - Between -20 and -10°C
 - dendritic particles grow efficiently
- First region with enhanced aggregation:
 - Aggregation: $D_{particle} \uparrow$
 - → important for precipitation formation

→ How can we measure aggregation?

Enhanced aggregation:

– Reflectivity Ze \uparrow : $D_{particle} \uparrow$, $N_{particle} \uparrow$

Enhanced aggregation:

- Reflectivity Ze \uparrow : $D_{particle} \uparrow$, $N_{particle} \uparrow$
- Differential scattering at different wavelengths (λ):

$$DWR_{\lambda_1\lambda_2} = Ze_{\lambda_1} - Ze_{\lambda_2}$$

- **DWR** \uparrow : $D_{particle} \uparrow$

Enhanced aggregation:

- Reflectivity Ze ↑ : $D_{particle} ↑$, $N_{particle} ↑$
- Differential scattering at different wavelengths (λ):

$$DWR_{\lambda_1\lambda_2} = Ze_{\lambda_1} - Ze_{\lambda_2}$$

- **DWR** \uparrow : $D_{particle} \uparrow$
- Growth of plate-like particles:
 - ZDR ↑: ar_{crystal} ↑ →

Enhanced aggregation:

- Reflectivity Ze ↑ : $D_{particle} ↑$, $N_{particle} ↑$
- Differential scattering at different wavelengths (λ):

$$DWR_{\lambda_1\lambda_2} = Ze_{\lambda_1} - Ze_{\lambda_2}$$

- **DWR** \uparrow : $D_{particle} \uparrow$
- Growth of plate-like particles:
 - ZDR ↑: ar_{crystal} ↑ →

Enhanced aggregation:

- Reflectivity Ze \uparrow : $D_{particle} \uparrow$, $N_{particle} \uparrow$
- Differential scattering at different wavelengths (λ):

$$DWR_{\lambda_1\lambda_2} = Ze_{\lambda_1} - Ze_{\lambda_2}$$

- **DWR** \uparrow : $D_{particle} \uparrow$
- Growth of plate-like particles:
 - ZDR ↑: ar_{crystal} ↑ →

How are aggregation and growth of ice crystals related?

→ Statistical analysis of DGL combining multifrequency Doppler radar observations with polarimetric Doppler cloud radar observations

How are aggregation and growth of ice crystals related?

Increasing aggregate size with increasing DWR-KaW class

How are aggregation and growth of ice crystals related?

Increasing aggregate size with increasing DWR-KaW class

MDV reduction→ combination of newmode of small particlesand updraft

How are aggregation and growth of ice crystals related?

Increasing aggregate size with increasing DWR-KaW class

→ combination of new
mode of small particles
and updraft

- Concentration of small particles continuously increases in DGL
- stronger increase for larger aggregates

How are aggregation and growth of ice crystals related?

- Why is KDP increasing, aggregation should consume ice particles?
- → Hypothesis: Fragmentation during aggregation process
 - Takahashi et al. 1993,1995: fragile arms growing on ice spheres were broken of during collision
- → Hypothesis can be further studied with e.g. Monte-Carlo Lagrangian particle models following talk by Jan-Niklas Welss

How are aggregation and growth of ice crystals related?

- Why is KDP increasing, aggregation should consume ice particles?
- → Hypothesis: Fragmentation during aggregation process
- → Hypothesis can be further studied with e.g. Monte-Carlo Lagrangian particle models following talk by Jan-Niklas Welss

Further information: von Terzi et al. 2022, ACP (in review), contact me: lterzi@uni-koeln.de

