

Comparison of different calving laws using a level set method

Cruz García MOLINA, Fabien GILLET-CHAULET, Mondher CHEKKI, Gael DURAND, Olivier

Comparison of different calving laws using a level set method EGU 2022

Cruz García Molina Fabien Gillet-Chaulet Mondher Chekki Gael Durand Olivier Gagliardini

Univ. Grenoble Alpes, CNRS, IRD, IGE 38000, Grenoble, France

May 24th, 2022

Objective

Comparison of different calving laws using a level set method

Cruz García Molina, Fabien Gillet-Chaulet, Mondher CHEKKI, Gae DURAND, Olivier To study numerically, using Elmer/Ice, different calving laws in a MISMIP configuration [Asay-Davis et al., (2016)].

Figure: First row: Initial ice thickness; second and third rows: bedrock profile of the MISMIP+ configuration [Asay-Davis et al., (2016)].

Level-set function

Comparison of different calving laws using a level set method

Cruz GARCÍA MOLINA.

Figure: Top: Schema of the levelset function to represent the calving front in yellow. The equally spaced isolines are in green. Bottom: Ice velocity (SSA Aprox.)

The level-set function, ϕ :

- Distance to the front at $\phi = \mathbf{0}$
- Is signed as:

$$\phi(ec{x}): egin{cases} <0, & ext{if } ec{x} \in \Omega_i \ =0, & ext{if } ec{x} \in \delta\Omega_i \ >0, & ext{otherwise} \end{cases}$$

- Defines a mask for elements.
- Evolves $v_{front} = (\vec{v}_{ice}^{\perp} c)$:

$$\frac{\partial \phi}{\partial t} + (\vec{\mathbf{v}}_{ice}^{\perp} - c) \cdot \nabla \phi = 0$$
 (1)

Ice Sheet MISMIP+: Constant calving rate

Comparison of different calving laws using a level set method

Cruz García Molina, Fabien GILLET-CHAULET, Mondher CHEKKI, Gael DURAND, Olivier GAGLIARDINI To test our solution we made three numerical experiments, departing from $x_c = 620 km$ for a calving rate:

$$c = egin{cases} c_1, & ext{if } z_{bed} < 0, \ 0, & ext{otherwise} \end{cases}$$

with z_{bed} the bedrock elevation; with the following values:

$$c_1: egin{cases} = 0, ext{ then } v_{front} = v_{ice}, ext{ advance} \ < v, ext{ then } v_{front} > 0, ext{ advance} \ > v, ext{ then } v_{front} < 0, ext{ retreat} \end{cases}$$

Test case: Cutoff based on thickness

Comparison of different calving laws using a level set method

Cruz García Molina, Fabien GILLET-CHAULET, Mondher CHEKKI, Gael DURAND, Olivier GAGLIARDINI

Based on [Nick et al., (2010)], departing from $x_c = 620 km$, we test the following calving law:

$$c := \begin{cases} 0, & \text{if } z_{bed} \ge 0 \\ \frac{H_{min}}{H} v_{ice}, & \text{otherwise} \end{cases}$$

Test case: Cutoff based on thickness and water depth

Comparison of different calving laws using a level set method

Cruz García
Molina,
Fabien
GilletChaulet,
Mondher
CHEKKI, Gael
DURAND,
Olivier
GAGI JARDINI

Based on [Ultee and Bassis, (2017)], departing from $x_c = 620$ km, we test the following calving law:

$$c := \frac{H_{min}}{H} v_{ice}$$

with H_{min} given as:

$$H_{min} = 2 rac{ au_y}{
ho_i oldsymbol{g}} + \sqrt{rac{
ho_w D^2}{
ho_i} + 2 rac{ au_y}{
ho_i oldsymbol{g}}}$$

with, D, the water depth, ρ_i , the ice density, ρ_w the water density, and τ_v the stress value.

Conclusions and perspectives

Comparison of different calving laws using a level set method

Cruz García Molina, Fabien Gillet-Chaulet, Mondher CHEKKI, Gae DURAND, Olivier GAGLIARDINI

- Levelset implementation validated using a constant calving rate
- Two additional calving laws implented and tested using MISMIP+ setup
- Implementation of more realistic calving laws to come! Work in progress!
- Application to a real setup to come! Work in progress!

Thank you

Comparison of different calving laws using a level set method

Cruz GARCÍA

Evolution of the "central" grounding line position vs time

Comparison of different calving laws using a level set method

Cruz García Molina, Fabien GILLET-CHAULET, Mondher CHEKKI, Gael DURAND, Olivier

Evolution of the "central" grounding line position vs time

Comparison of different calving laws using a level set method

Cruz García Molina, Fabien GILLET-CHAULET, Mondher CHEKKI, Gael DURAND, Olivier GAGLIARDINI

Evolution of the "central" grounding line position vs time

Comparison of different calving laws using a level set method

Cruz García MOLINA, Fabien GILLET-CHAULET, Mondher CHEKKI, Gael DURAND, Olivier GAGLIARDINI

Impact of the calving position on the central ice velocity.

Comparison of different calving laws using a level set method

Cruz García Molina, Fabien GILLET-CHAULET, Mondher CHEKKI, Gael DURAND, Olivier

Figure: Comparison with the: maximum (red), minimum (blue), and average (black) velocity values for a calving front placed at 640 km.

Departing from any position after 600 km leads to a configuration with front velocities that remain in the normal oscillations of the fron velocity.