

PROBE achievements

PROfiling the atmospheric

Boundary layer at

European scale

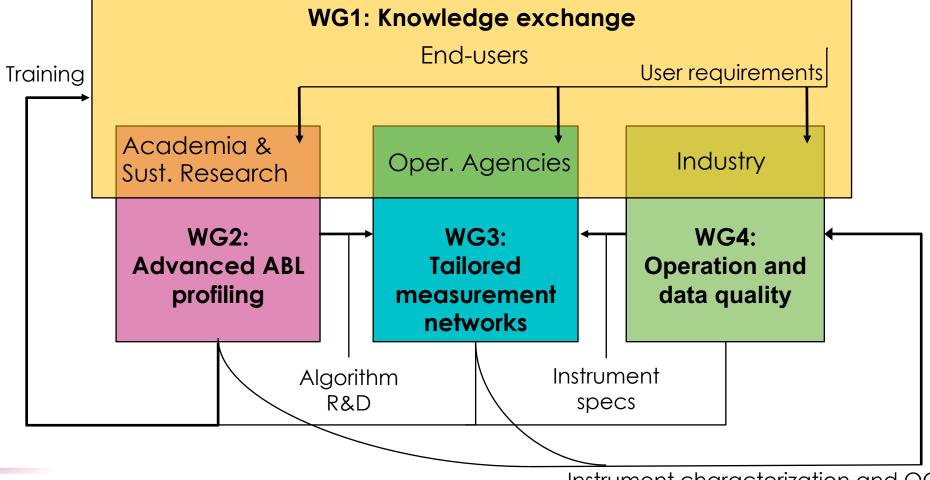
P R B E

C S I

A C T I 🔵 N

2019-2023

MC Chair: Martial Haeffelin


MC Vice-chair: DomeNico Cimini

Anca Nemuc, Simone Kotthaus, Henri Diemoz, Pauline Martinet, Ewan O'Connor, Anne Hirsikko, Uli Löhnert, Joelle Buxmann, Christine Knist, Chris Walden, Claudia Acquistapace, Klara Jurcakova, Iwona Stachlewska, Ekaterina Batchvarova

Objective and organisation

To improve overall capacity, quality and use of Atmospheric Boundary Layer Profiling at European scale

Who is involved?

Participants from 30 European and 7 non-EU countries

- 20 Universities (Physics, Atmospheric science, Meteorology dep.)
- 16 National weather services and EUMETNET E-PROFILE
- 8 National research institutions
- 1 European research organization (ECMWF)
- 3 Instrument manufacturers
- 200+ registered end-users
- WMO endorsement

Instruments

- Automated lidar ceilometers (ALC)
- Doppler wind lidars (DWL)
- Microwave radiometers (MWR)
- Cloud Radars (CR)
- Emerging technologies (DIAL, UAVs,...)

Inclusiveness Targeted Countries (ITC)

- Full/Cooperating members: Albania, Austria, Belgium, <u>Bulgaria</u>, <u>Croatia</u>, <u>Cyprus</u>, <u>Czech Rep.</u>, Denmark, <u>Estonia</u>, Finland, France, Germany, <u>Hungary</u>, Iceland, Ireland, Israel, Italy, <u>Lithuania</u>, Netherlands, <u>Poland</u>, <u>Portugal</u>, <u>Romania</u>, <u>Serbia</u>, <u>Slovakia</u>, <u>Slovenia</u>, Spain, Switzerland, Turkey, UK
- International Partners: China, Japan, South Korea, UAE, USA
- Near-Neighbour Countries: Armenia, Russian Fed.

1. Knowledge exchange

Who are PROBE users?

- Operators of instruments and networks
- Product and algorithm developers
- **End-users** working with products (e.g. fog alerts, ABLH)
- Specific environments: complex terrain, urban

Dissemination activities

• Introductory lectures (PROBE youtube), newsletters, PROBE website

Profiling the atmospheric boundary layer at a European scale (AMT/GMD inter-journal SI)

Editor(s): Domenico Cimini, Claudia Acquistapace, Joelle Buxmann, Volker Lehmann, Markus Kayser, Stelios Kazadzis, Anca Nemuc, and Klara Jurcakova

Special issue jointly organized between Atmospheric Measurement Techniques and Geoscientific Model Development

https://amt.copernicus.org/articles/special_issue1209.html Including Review on ABL height observations

User

needs?

New

developments

Specific domains of interest:

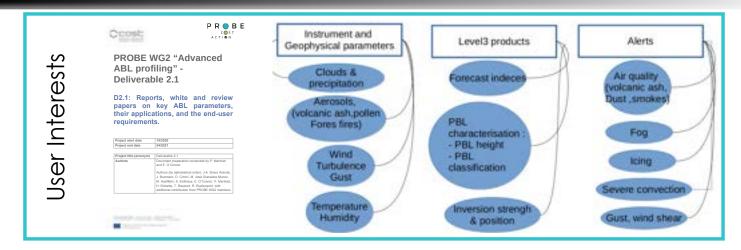
- Complex terrains: 2 active workshops, conducting comprehensive literature review as community effort
- Urban environments: 2 workshops, contribution to intensive observations in Paris 2022 #PANAME

Upcoming:

 Mapping existing connections to users within PROBE

Dissemination

User-needs workshop (e.g. NWP/CTM modelers)

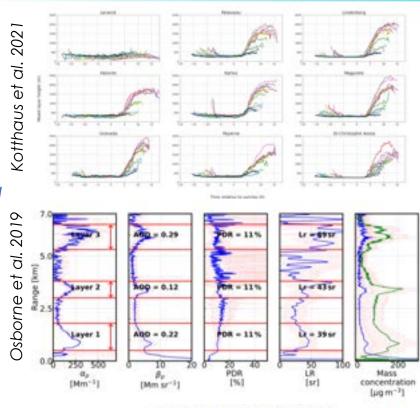


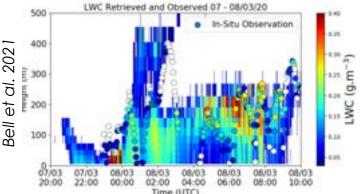
Products

available?

2. Advanced ABL profiling

New products tested during 2022 Paris urban field experiments:


- Nowcasting of severe heat, convection and pollution events
- Advanced ABL height, temperature, humidity, LWC & wind profile retrievals


Improved aerosol profiling from multi-instrument synergy:

- Aerosol mass concentration (Lidar + sunphotometer)
- Size distribution and fall velocity

Improved fog forecasts and fog understanding:

- Data assimilation, fog LWC retrievals
- Real-time alerts based on observations

3. Tailored measurement networks

Online ressources

Documents

European networks observing the atmospheric boundary layer: Overview, access and impacts

Available at https://www.probe-cost.eu/

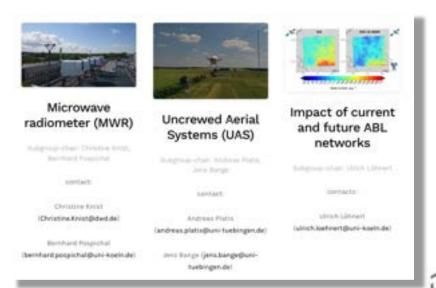
Chapter 1: Overview of the existing networks

Chapter 2

Chapter 2a: Automatic lidars and ceilometers (ALC)

Chapter 2b: Doppler cloud radar (DCR)

Chapter 2c: Doppler lidar (DL)


Chapter 2d: Microwave radiometer (MWR)

Chapter 2e: Uncrewed Aircraft Systems (UAS) profiling

Chapter 3: Impacts of current and future ABL networks

Task Groups

4. Operation and data quality

"Doppler Lidar stations"

Python software: Freely avalaible

- Instrument configuration and scan schedule
- Common data processing for networks
- Calibration and QC/QA for networks

"Microwave Radiometer stations"

- Calibration standards/instructions for network operations
- Development of common data processing for networks
- QC/QA for network application

"Automatic Lidar & Ceilometer stations"

- Sensor-specific guidelines (SOPs) in coordination with E-PROFILE & ACTRIS
- Standardised calibration procedures and implementation
- Optical overlap correction
- Capabilities and limitations of new ALC models (e.g. Vaisala CL61)

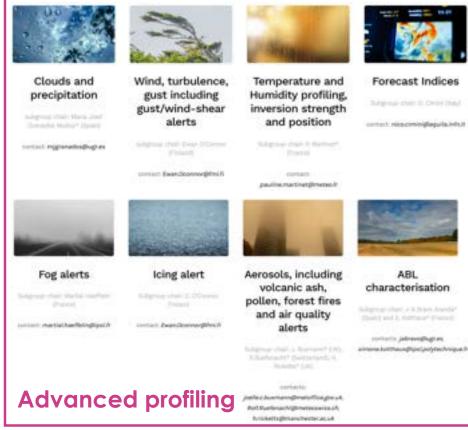
Communication & dissemination

http://probe-cost.eu/

Activities:

- Emaling lists
- Website
- Videos
- Newsletters
- Webinars
- Social channels
 - Twitter, Facebook, Instagram, Linkedin, Youtube, Slack

Go to probe-cost.eu



- Engages a large scientific community
- Develops methods, tools and scientific and technical documents, relevant for network applications

Register on PROBE website

Annual workshop 6-7 October 2022

Evora, Portugal

Contacts

https://twitter.com/CostProbe

- https://www.instagram.com/probe_costaction/
- https://probe-cost-action.slack.com
- http://doi.org/10.1007/s42865-020-00003-8

