

Graphical Model Assessment of Probabilistic Forecasts

Moritz N. Lang, Reto Stauffer, Achim Zeileis

https://topmodels.R-Forge.R-project.org/

Probabilistic regression models:

- Modelling the entire probability distribution rather than just the expectation.
- Various model classes and types.

Probabilistic regression models:

- Modelling the entire probability distribution rather than just the expectation.
- Various model classes and types.

Goodness of fit:

- Scoring rules for evaluating the predictive performance, e.g., using the log-score or the (continuous) ranked probability score.
- Visualizations especially suitable for identifying possible misspecifications.

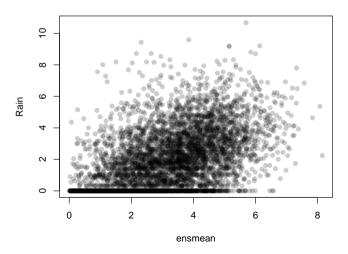
Probabilistic regression models:

- Modelling the entire probability distribution rather than just the expectation.
- Various model classes and types.

Goodness of fit:

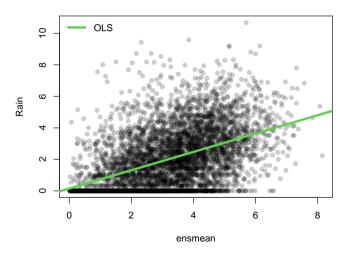
- Scoring rules for evaluating the predictive performance, e.g., using the log-score or the (continuous) ranked probability score.
- Visualizations especially suitable for identifying possible misspecifications.
- ⇒ What are useful elements of such graphics?

Probabilistic regression models:

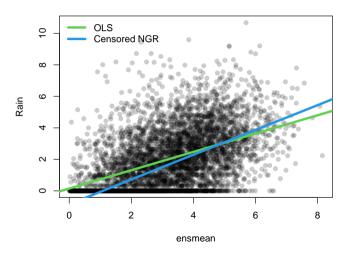

- Modelling the entire probability distribution rather than just the expectation.
- Various model classes and types.

Goodness of fit:

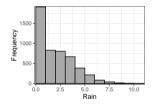
- Scoring rules for evaluating the predictive performance, e.g., using the log-score or the (continuous) ranked probability score.
- Visualizations especially suitable for identifying possible misspecifications.
- ⇒ What are useful elements of such graphics?
- ⇒ What are relative (dis)advantages?


Probabilistic precipitation forecasting

Observed vs. ensmean:

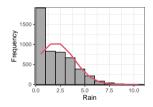

Probabilistic precipitation forecasting

Observed vs. ensmean:


Probabilistic precipitation forecasting

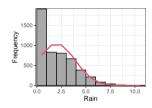
Observed vs. ensmean:

However: Is the model calibrated?

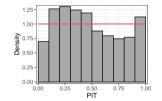

However: Is the model calibrated?

Marginal calibration:

- Observed frequencies.

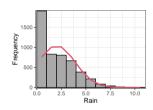

However: Is the model calibrated?

Marginal calibration:

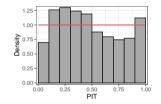

- Observed frequencies.
- Compare: Expected.

However: Is the model calibrated?

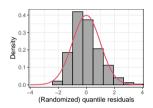
Marginal calibration:


- Observed frequencies.
- Compare: Expected.

Probabilistic calibration:

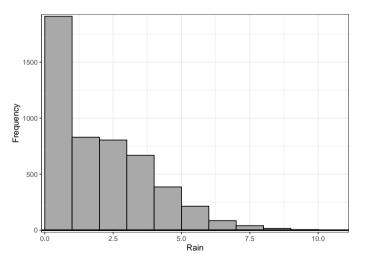

- PIT residuals: $u_i = F(y_i|\hat{\theta}_i)$.
- Compare: Uniform.

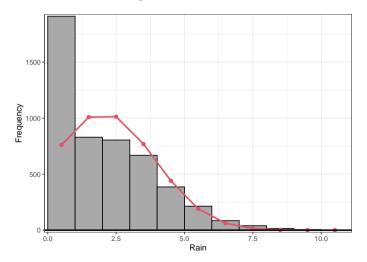
However: Is the model calibrated?


Marginal calibration:

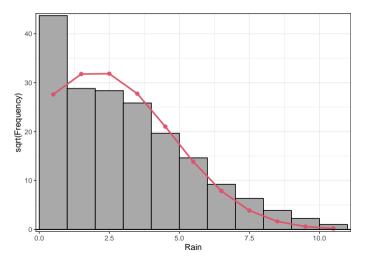
- Observed frequencies.
- Compare: Expected.

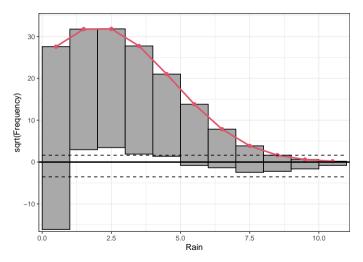
Probabilistic calibration:

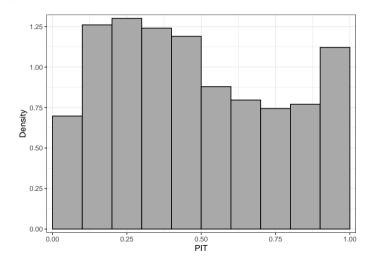

- PIT residuals: $u_i = F(y_i|\hat{\theta}_i)$.
- Compare: Uniform.

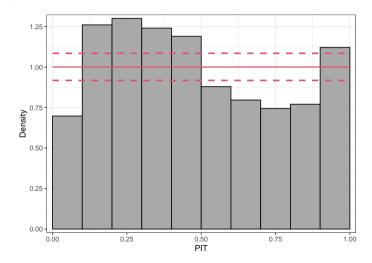

Probabilistic calibration:

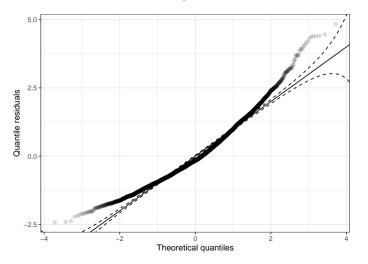
- Quantile residuals: $\hat{r}_i = \Phi^{-1}(u_i)$.
- Compare: Normal

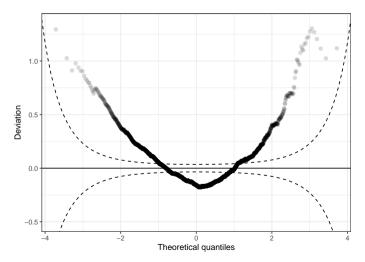

Frequencies: Observed


Frequencies: Observed vs. expected

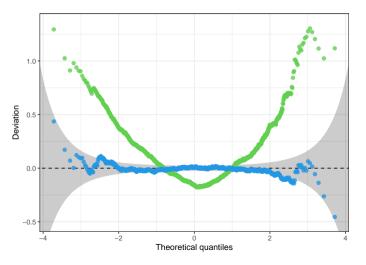

Frequencies: $\sqrt{\text{Observed}}$ vs. $\sqrt{\text{expected}}$


Frequencies: $\sqrt{\text{Observed}}$ vs. $\sqrt{\text{expected}}$

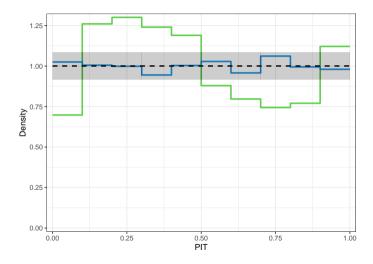

PIT residuals:


PIT residuals:

Quantile residuals: Observed vs. expected



Quantile residuals: Deviations


Model comparison

Quantile residuals: Deviations

Model comparison

PIT residuals:

Summary

Graphical assessments: Various possibilities suggested in different parts of the literature.

- Rootogram.
- Probability integral transform (PIT) histogram.
- (Randomized) quantile-quantile residuals plot.
- Detrended Q-Q residuals plot or worm plot.
- Reliability diagram at prespecified thresholds.

Summary

Graphical assessments: Various possibilities suggested in different parts of the literature.

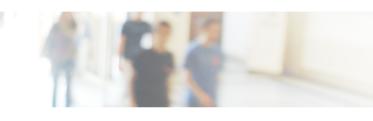
- Rootogram.
- Probability integral transform (PIT) histogram.
- (Randomized) quantile-quantile residuals plot.
- Detrended Q-Q residuals plot or worm plot.
- Reliability diagram at prespecified thresholds.

topmodels: Unifying toolbox for graphical model assessment.

available on R-Forge at https://topmodels.R-Forge.R-project.org/

References

Lang MN, Zeileis A et al. (2021). "topmodels: Infrastructure for Inference and Forecasting in Probabilistic Models." R package version 0.2-0. https://topmodels.R-Forge.R-project.org/


Dunn PK, Smyth GK (1996). "Randomized Quantile Residuals." *Journal of Computational and Graphical Statistics*, **5**(3), 236–244. doi:10.2307/1390802

Gneiting T, Balabdaoui F, Raftery AE (2007) "Probabilistic Forecasts, Calibration and Sharpness." Journal of the Royal Statistical Society: Series B (Methodological), **69**(2), 243–268. doi:10.1111/j.1467-9868.2007.00587.x

Kleiber C, Zeileis A (2016). "Visualizing Count Data Regressions Using Rootograms." *The American Statistician*, **70**(3), 296–303. doi:10.1080/00031305.2016.1173590

Messner JW, Mayr GJ, Zeileis A (2016). "Heteroscedastic Censored and Truncated Regression with crch." The R Journal., **8**(1), 173–181. doi:10.32614/RJ-2016-012

https://topmodels.R-Forge.R-project.org/