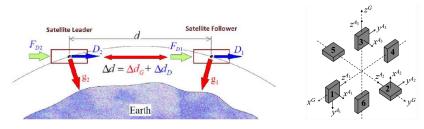
A tool for accelerometer modeling

Arthur Reis¹ Alexey Kupriyanov² Vitali Müller¹

¹Max Planck Institute for Gravitational Physics (AEI) Leibniz University Hannover

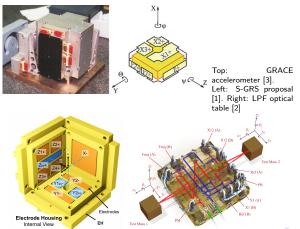
> ²Institut für Erdmessung Leibniz University Hannover

EGU GA 2022, Vienna, May 2022



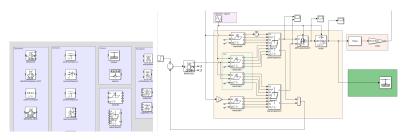
Accelerometers in gravimetry

Accelerometers (ACCs) are part of science payload in gravimetry missions. Can be used to measure forces impacting spacecraft (SC), or as test mass (TM) following a geodesic. Also gradiometers to measure local Δg .


Left: scheme of GRACE-type gravimetry mission [9]. Right: accelerometer placement in GOCE (gradiometry mission) [8].

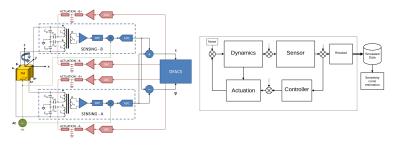
Accelerometer design challenges

Different geometries depending on application and constraints; Sensors can be capacitive, optical, cold atom (in future).


Actuation of TM is electrostatic repulsion;

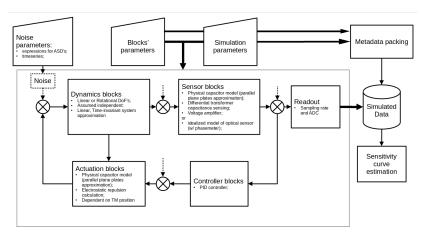
TM may have charge build up and needs UV light or gold wire to discharge;

Accelerometer modeling


Need a tool to estimate the performance of the instruments and indicates scenarios w/ best science return. A mission can have one or more ACCs (of the same or different designs) per SC. ACME - Accelerometer Modeling Extended. Programmed in Matlab/Simulink environment. Designed to be modular, parametrizable, instantiable, integration with XHPS [7];

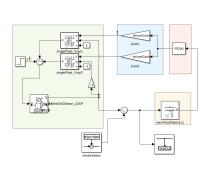
Simulink block library and example application model

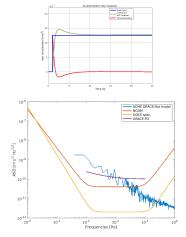
Accelerometer modeling


The simulator is independent of geometry, sensor technique, noise model, control loop, etc. To simplify, assume independent DoFs, linearized terms and a generalized ACC.

Left: Block diagram of LPF actuation circuit [5]. Right: generic block diagram representing an ACC

Accelerometer modeling

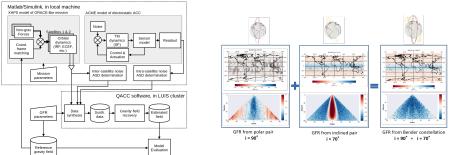

Each module can contain a variety of implementation options and parameters, as we try to cover most ACC designs.



Block diagram with options and parameters

Standalone simulation

Able to simulate a instrument with a model for dynamics, sensors, actuation and noises. Produces both time and frequency domain results.


 $\ \, \mathsf{Left:} \,\, \mathsf{Screenshot} \,\, \mathsf{of} \,\, \mathsf{a} \,\, \mathsf{GRACE}\text{-}\mathsf{FO}\text{-like} \,\, \mathsf{ACC} \,\, \mathsf{model}. \,\, \mathsf{Top:} \,\, \mathsf{time-domain} \,\, \mathsf{response} \,\, \mathsf{of} \,\, \mathsf{an} \,\, \mathsf{ACC} \,\, \mathsf{to} \,\, \mathsf{a} \,\, \mathsf{step} \,\, \mathsf{input}. \,\, \mathsf{Bottom:} \,\, \mathsf{and} \,\, \mathsf{a$

GFR simulation

Simulate a Gravity Field Recovery mission scenario using tools developed within the TerraQ collaborations ACME + XHPS + QACC:

XHPS = multibody orbital dyn. on hi-fi gravitational field [7];

 $\mathsf{QACC} = \mathsf{GFR}$ data synth. from orbital and ACCs simulation [10].

Left: ACME+XHPS+QACC workflow. Right: map of EWH produced in 3 mission scenarios

Thank you!

arthur.reis@aei.mpg.de

References:

- Anthony Davila Alvarez et al. "A Simplified Gravitational Reference Sensor for Satellite Geodesy". In: arXiv (2021). DOI: 10.48550/arxiv.2107.08545.
- [2] M. Armano et al. "Sensor Noise in LISA Pathfinder: In-Flight Performance of the Optical Test Mass Readout". In: Phys. Rev. Lett. 126 (2021). DOI: 10.1103/PhysRevLett.126.131103.
- Björn Frommknecht and Anja Schlicht. "The GRACE Gravity Sensor System". In: System Earth via Geodetic-Geophysical Space Techniques. 2010.
- [4] Richard P. Kornfeld et al. "GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission". In: Journal of Spacecraft and Rockets 56 (2019).
- [5] Davor Mance. "Development of Electronic System for Sensing and Actuation of Test Mass of the Inertial Sensor LISA". PhD thesis. 2012.
- [6] Jean-Pierre Marque et al. "Accelerometers of the GOCE Mission: Return of Experience from One Year of In-Orbit". In: ESA Living Planet Symposium. 2010.
- [7] Benny Rievers et al. "XHPS: A modular approach for the high precision modeling of satellite formations for geodetic and fundamental physics applications". In: 42nd COSPAR Scientific Assembly. Vol. 42. 2018.
- [8] C. Siemes et al. "GOCE gradiometer data calibration". In: J Geod 93 (2019).
- [9] P. Silvestrin et al. "Satellite formations and constellations for synergetic missions: a paradigm for international cooperation in earth observation". In: 66th International Astronautical Congress. 2015.
- [10] H. Wu. Gravity field recovery from GOCE observations. FBG-LUH, 2016.