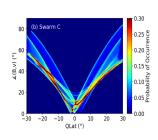
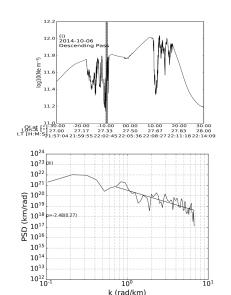

Spectral Properties of Kilometer-scale Equatorial Irregularities as Seen by the Swarm Satellites

Stephan Buchert¹, Sharon Aol², Edward Jurua², Luca Sorriso-Valvo¹

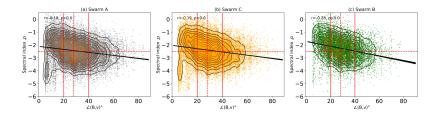

¹IRF, Uppsala; ²Mbarara University of Science and Technology, Uganda;

EGU General Assembly, Online, May 27, 2022



- ► ESA Swarm satellites, ≤ 100,000 equator crossings per s/c;
- detect well-known plasma bubbles and irregularities
- with the Langmuir Probes, partially at 16 Hz time resolution,
- which corresponds to ~ 1 km spatial scale;
- ▶ the power spectral properties of N_e are important,
- e.g. for phase screen models of scintillations (Rino, 1979).
- previously studied with C/NOFS, e.g. Rodrigues et al. (2009);
- this study:
 - polar orbits,
 - ▶ angle between \vec{B} and s/c track between ≈ 0 and 40°

Spectral Index


- ► FFT of the residual ΔN_e after linear detrending
- within a moving window of 8-s,
- when $std(\Delta N_e)$ is above a threshold;
- ▶ assume irregularities are frozen for 8 s, frequency → wave number k,
- straight line fit of log(k)-log(P) gives
- ► the spectral index *p*

Results

- the spectral index statistically varies with the magnetic latitude
- symmetrically around the equator
- ▶ from more "inertial" near the equator
- to more "dissipative" turbulence further away.

Results

- In the spectral index statistically weakly varies with the angle between \vec{B} and $\vec{v}_{s/c}$
- this may be an effect of the latitude dependence
- rather than caused by the probing of the irregularities at different aspect angles?

Conclusions

- ▶ the spectral index estimated from the 16 Hz Swarm density data 2014–2018 is with the ranges previously observed with other missions (C/NOFS, DE-2, . . .)
- the spectra vary with magnetic latitude, symmetrically around the equator,
- ightharpoonup being more shallow near 0° QDLat and steeper further away;
- there is also a weak dependence on the magnetic field aspect angle,
- ightharpoonup which might be caused by anisotropic irregularities (at ~ 1 km scales),
- or be a consequence of the latitude dependence.