

Application of Deep Learning Model to LULCC Monitoring using Remote Sensing Images

-A case study in suburban areas of central Taiwan

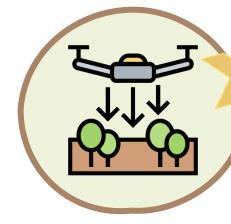
Presenter: Zhong-Han Zhuang / 莊忠翰

Advisor: Hui Ping Tsai/ 蔡慧萍

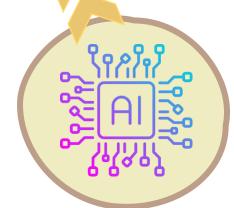
Date: 24th May, 2022

Outline

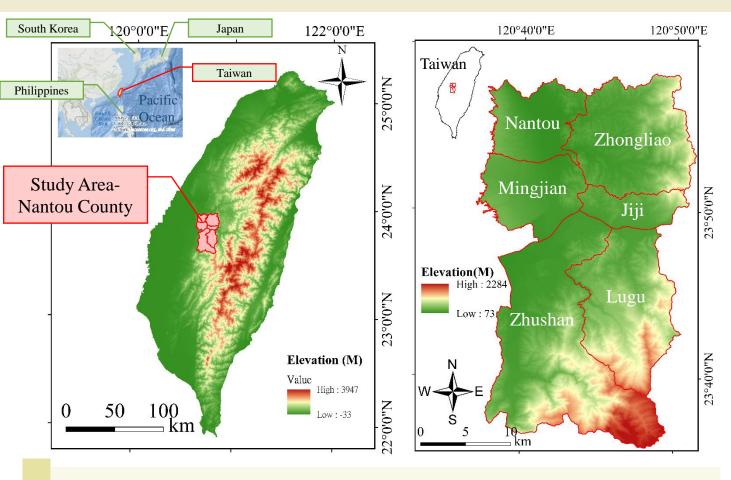
- **Introduction**
- Materials and Methods
- **Results and Discussions**
- **Conclusion**
- Future Work



Introduction



Land Use and Land Cover Change



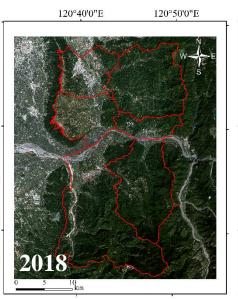
Materials and Methods

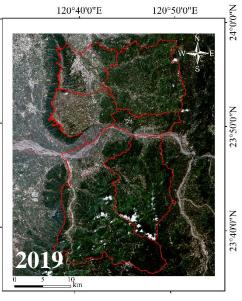
Taiwan - Located on the southeast coast of the Asian continent and the west coast of the Pacific Ocean.

Study Area-Nantou County

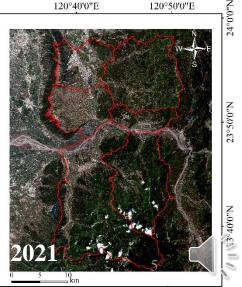
Area	736.4 km ²	
Elevation	73 m ~ 2,284 m	
Plantation	Tea ` Rice ` Fruits ` Flowers	
6 Township	Nantou City, Zhongliao, Mingjian, Jiji, Zhushan, Lugu	
Land cover classes	Agriculture (Agr), Water (W), Forest (F), Bareland (BL), Built-up (BU)	

[Satellite Image]

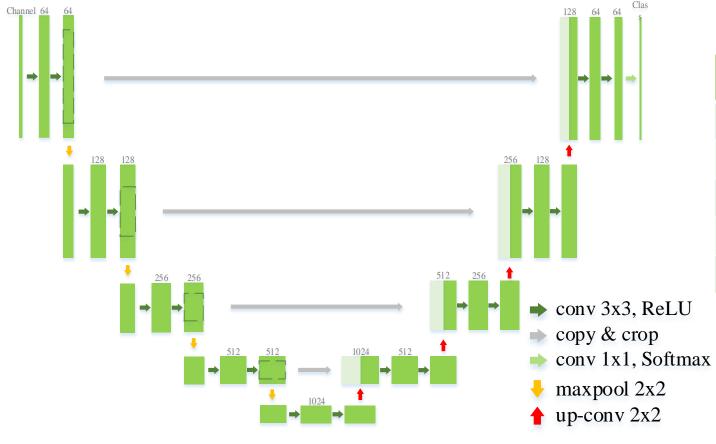

Materials and Methods


Satellite	Sentinel-2
Image Size	4302×3589
Resolution	10 m/pixel
Spectual Band	Blue · Green · Red · NIR
Vegetation Index	NDVI · SAVI
Acquisition Date	2018/02/15, 2019/02/15, 2020/02/25, 2021/03/16


Vegetation Index	Equation	Reference
NDVI Normalized difference vegetation index	$\frac{NIR - R}{NIR + R}$	Rouse <i>et al.</i> , 1973
SAVI Soil-adjusted vegetation index	$\frac{1.5(NIR - R)}{NIR + R + 0.5}$	Huete et al., 1992


【Study Period】

Retady 1 0110d 2					
2018	2019		2020		2021
—— A ——	_	—в —		— с –	

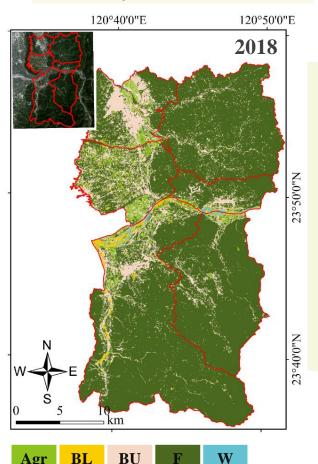


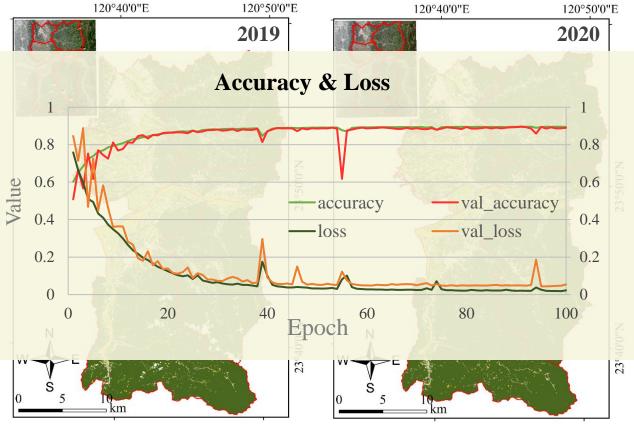
Materials and Methods

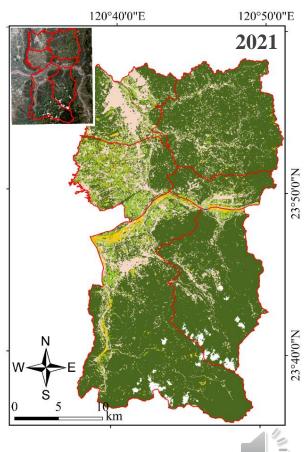
[Deep Learning Model] — $U ext{-}net$

U-net Model Parameter			
Batch Size	5		
No. of epochs	100		
No. of training and validation images	1,250		
Training image size	128×128		
Train/Validation Ratio	8:2		

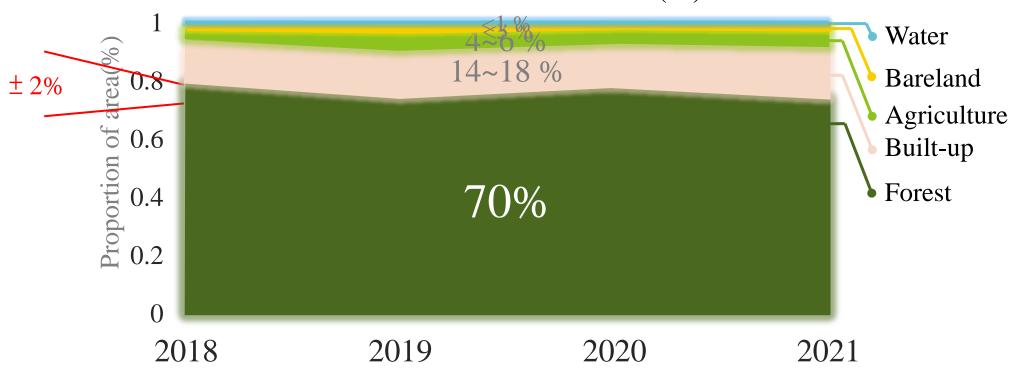
Materials and Methods


[Landscape Metrics]

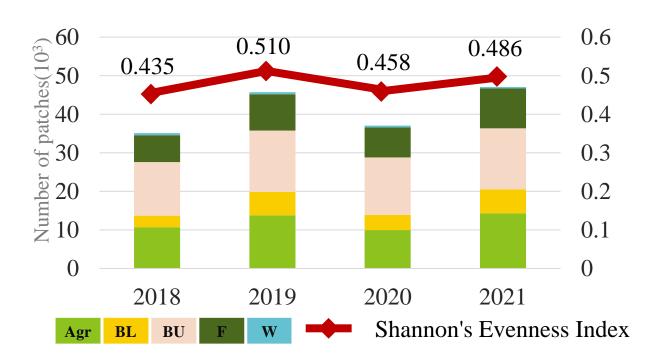

Landscape Metrics			
Area of each class	Total Area in each class Total Area	The change trajectory of area can be measured for each class.	
Number of Patches	-	The number of patches can be expressed as the degree of fragmentation of the landscape.	
Mean Shape Index (MSI)	$SI = \frac{0.25 \sum_{k=1}^{m} e_{ik}^*}{\sqrt{A}}$	MSI presents the complexity of the patches, the smaller the value, the more regular the shape, means that more the intervention of human factors.	
Area-Weighted Mean Patch Fractal Dimension (AWMPFD)	$AWMPFD = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} \left[\frac{2 \ln(0.25 p_{ij})}{\ln a_{ij}} \right]}{N}$	AWMPFD is used to measure the shape and structure complexity of patches.	
Shannon's Evenness Index (SHEI)	$SHEI = \frac{-\sum_{i=1}^{m} (P_i \times \ln P_i)}{\ln m}$	SHEI shows the evenness of each class distribution.	



[Image Classification]

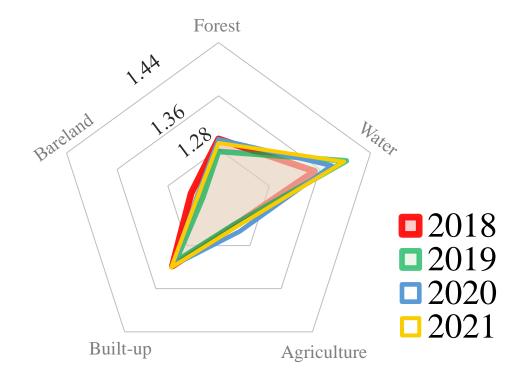


[Landscape]


Area of each classes (%)

[Landscape]

Number of Patches & SHEI


Number of Patches

Class	2018	2019	2020	2021
Agriculture	10,729	13,897	9,976	14,465
Bareland	2,985	6,258	3,929	6,417
Bulit-up	13,876	16,259	14,894	16,387
Forest	6,972	9,479	7,773	10,492
Water	558	548	485	432
# of Patches	35,120	45,721	37,057	47,084
Patch Density	39.74	52.22	41.94	54.02

[Landscape]

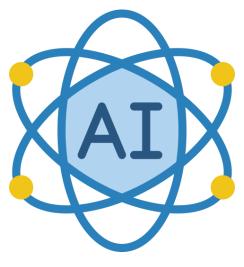
Mean Shape Index

Year	Period	LSI	AWMPFD
2018	A	1.285	1.306
2019	В	1.272	1.318
2020	C	1.287	1.308
2021	_	1.280	1.317

LSI: Landscape Shape Index

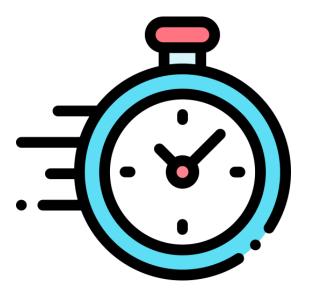
AWMPFD: Area-Weighted Mean Patch Fractal Dimension

SHEI: Shannon's Evenness Index



Conclusion

- 1. The forest area has the largest area, accounting for about 70%, followed by the built-up area.
- 2. A slight upward trend in agricultural area.
- 3. The number of patches has an increasing trend in 2018-2019 and 2020-2021, indicating that there is a tendency to fragmentation.
- 4. The LSI and AWMPFD values show that there may be less human intervention in period 2019-2020.
- 5. With the change of SHEI value, the distribution of patches tends to be even except in 2019-2020.


Future Work

Using different classification models

Apply to others regions

Make good use of multi-period images

References

- Ayala-Izurieta, Johanna E., et al. "Land cover classification in an ecuadorian mountain geosystem using a random forest classifier, spectral vegetation indices, and ancillary geographic data." Geosciences 7.2 (2017): 34.
- Chuang, Yung-Chung Matt, and Yi-Shiang Shiu. "A comparative analysis of machine learning with WorldView-2 pan-sharpened imagery for tea crop mapping." Sensors 16.5 (2016): 594.
- Garg, Lakshya, et al. "Land Use Land Cover Classification from Satellite Imagery using mUnet: A Modified Unet Architecture." VISIGRAPP (4: VISAPP). 2019.
- Gašparović, M., & Jogun, T., 2018. The effect of fusing Sentinel-2 bands on land-cover classification. International journal of remote sensing, 39(3), 822-841.
- Ghassemi, Sina, et al. "Learning and adapting robust features for satellite image segmentation on heterogeneous data sets." IEEE Transactions on Geoscience and Remote Sensing 57.9 (2019): 6517-6529
- Gibril, Mohamed Barakat A., et al. "Fusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area." Geocarto international 32.7 (2017): 735-748.
- Huang, Yanhong, et al. "Estimating Tea Plantation Area Based on Multi-source Satellite Data." 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics). IEEE, 2019.
- Huete, A. R., Hua, G., Qi, J., Chehbouni, A., & Van Leeuwen, W. J. D., 1992. Normalization of multidirectional red and NIR reflectances with the SAVI. Remote Sensing of Environment, 41(2-3), 143-154.
- Niculescu, Simona, Dino Ienco, and Jenica Hanganu. "Application of Deep Learning of Multi-Temporal SENTINEL-1 Images for the Classification of Coastal Vegetation Zone of the Danube Delta." Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 42.3 (2018).
- Pelletier, Charlotte, et al. "Using Sentinel-2 Image Time Series to map the State of Victoria, Australia." 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). IEEE, 2019.
- Pelletier, Charlotte, Geoffrey I. Webb, and François Petitjean. "Temporal convolutional neural network for the classification of satellite image time series." Remote Sensing 11.5 (2019): 523.
- Ronneberger, O., Fischer, P., & Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham.
- Rouse, J. W., Haas, R. H., Schell, J. A., Deering, D., Deering, W. 1973. Monitoring vegetation systems in the Great Plains with ERTS, ERTS Third Symposium, NASA SP-351 I, pp. 309-317.
- Rwanga, S. S., & Ndambuki, J. M., 2017. Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8(04), 611.
- Wu, Ming, et al. "Towards accurate high resolution satellite image semantic segmentation." IEEE Access 7 (2019): 55609-55619.
- Zhang, Pengbin, et al. "Urban land use and land cover classification using novel deep learning models based on high spatial resolution satellite imagery." Sensors 18.11 (2018): 3717

Application of Deep Learning Model to LULCC Monitoring using Remote Sensing Images -A case study in suburban areas of central Taiwan

Thank you for your attention

Presenter: Zhong-Han Zhuang/莊忠翰

Advisor: Hui Ping Tsai/ 蔡慧萍

E-mail: zhonghan.zhuang@smail.nchu.edu.tw

