

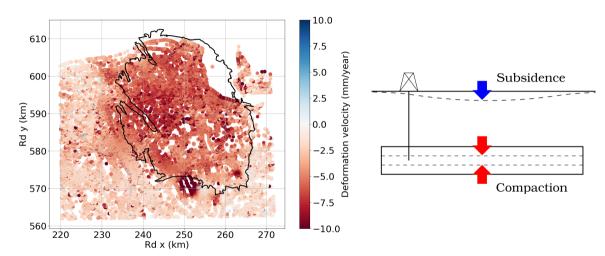
On the use of InSAR observations for data assimilation

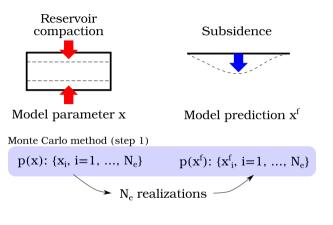
Samantha S.R. Kim ¹, Femke C. Vossepoel ¹, Wietske S. Brouwer ², Ramon F. Hanssen ², Marius C. Wouters ³, Rob Govers ³, Chayenne Janssen ³, Esther Stouthamer ³

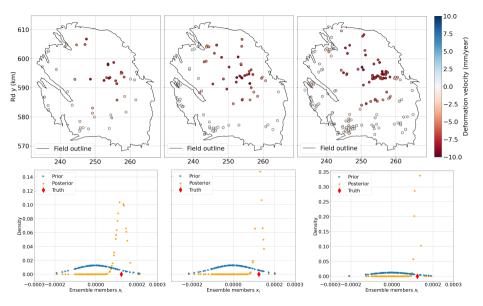
¹Department of Geoscience and Engineering, Delft University of Technology, Delft, The Netherlands

²Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, The Netherlands

³Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands



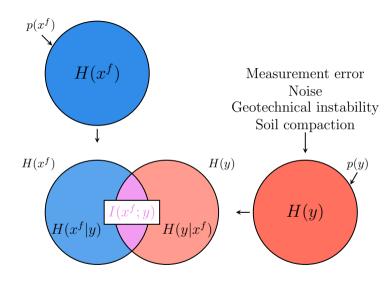



Particle method for subsidence estimation

A question of performance

- Probabilistic method: Monte Carlo
 - Prior knowledge on model parameters, p(x)
 - Ensemble size = number of realizations N_e
 - Prior distribution of model prediction, $p(x^f)$
- Assimilate data, y
- **3** Create a **posterior weighted distribution** p(x|y)

Posterior p(x|y) = "How each realization x_i gives a model prediction close to the observations"

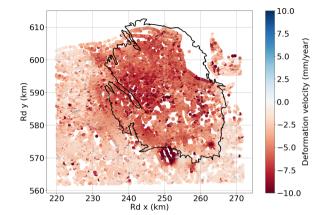


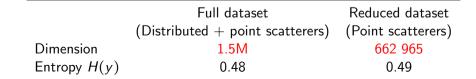
The particle method performance depends on the quality of the posterior \rightarrow Ensemble size.

Entropy

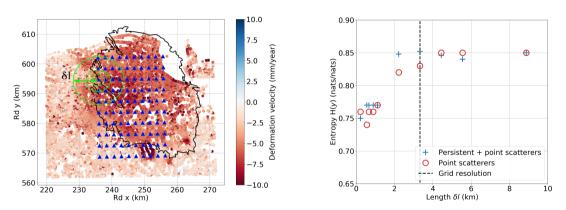
Quantifying the information introduced in the system

- H is the uncertainty (reciprocally the information) on a variable: deformation velocity, y
- "Can we know what signal is contained in the observations?"
- Assimilate this information to estimate model parameters, x




Reduction of the number of observations

Step 1: entropy in InSAR dataset


Distributed scatterers: averaged points

Point scatterers: 1 single measurement

Step 2: averaging and spatial correlation (100 observations $\rightarrow N_e = 10^6$)

Redundancy is characterized by an increasing entropy: convergence to a Gaussian distribution that does not represent the signal in the full dataset.

Conclusions

- Particle method performance decreases with an increasing dimension of the observational space
- Information content of reduced InSAR data:
 - Point scatterers: conserve the same amount of information but reduces the number of observations from 1.5 million to 600 000
 - **2 Optimal length** δl : with an observation grid of 0.03 degrees (\sim 3 km) we show that $\delta l < 2$ km represents the best the information content in the full dataset

Thank you

s.s.r.kim@tudelft.nl