

Method development for on-site freshwater analysis with pre-concentration of nickel via ion-exchange resins embedded in a cafetière system and paper-based analytical devices for readout

Mila Sari¹, Samantha Richardson², Will Mayes³, Mark Lorch¹, Nicole Pamme^{1,4}

Scan to read our abstract

¹Department of Chemistry and Biochemistry, University of Hull, UK

²Department of Biological and Marine Science, University of Hull, UK

³Department of Geography, Geology, and Environment, University of Hull, UK

⁴Department of Materials and Environmental Chemistry, Stockholm University, Sweden

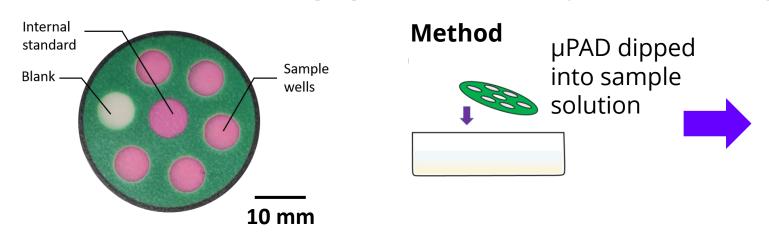
Heavy metals in water environments

The mean concentration of **heavy metals** in global rivers and lakes has been increasing since 1970

Monitoring required

Limitations of current monitoring methods:

- Not on-site
- No real-time result
- Require trained personnel and laboratory environment


Citizen Science advantages:

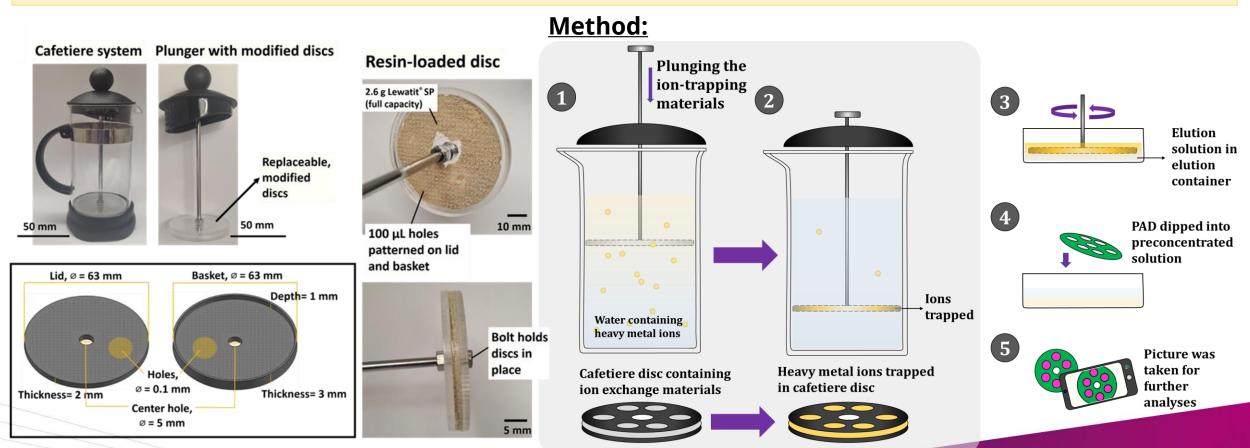
- Potential for wider spatio-temporal monitoring
- Potential to produce more data
 → better mapping
- Reduce cost (travel, *etc*.)

Paper-based analytical devices for water analysis

What is microfluidic paper-based analytical device (µPAD)?

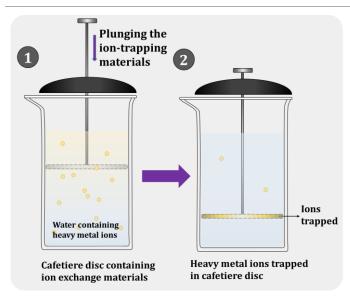
Chemical reaction for Ni²⁺ detection

Challenge: for heavy metal analysis, preconcentration is needed


Advantages of µPADs in water analysis:

- ✓ Simple
- ✓ Affordable
- ✓ Potential for Citizen Science

Cafetière-based pre-concentration with IE resin



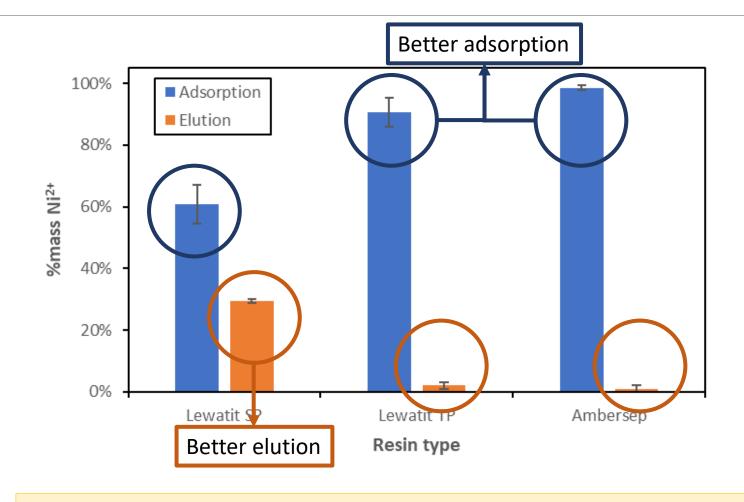
We aim to develop a pre-concentration workflow with ion exchange (IE) resin to be coupled with $\mu PADs$ for heavy metal analysis to enable citizen led monitoring

Key results - Ni²⁺ adsorption and elution

Experimental conditions

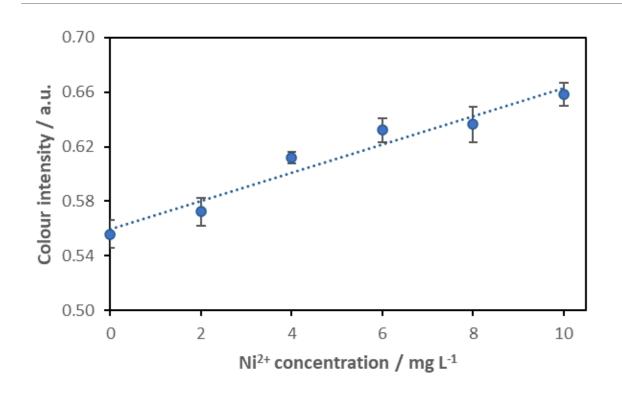
Adsorption

Sample volume: 300 mL Initial Ni²⁺ conc.: 0.8 mg L⁻¹ Resin mass: 2.60 ± 0.02 g

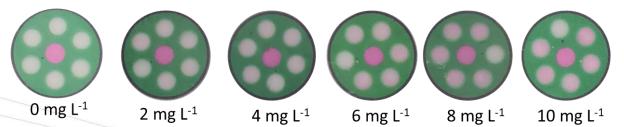

Mixing time: 5 min

Elution

NaCl concentration: 5 M

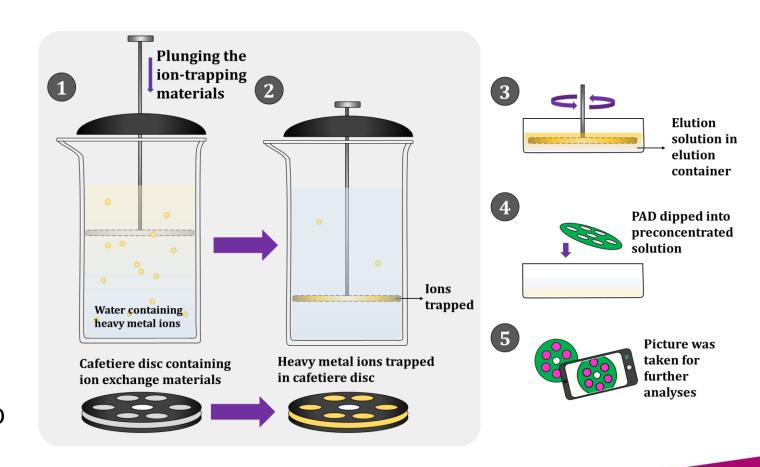

NaCl volume: 30 mL

Time: 1 min



- Lewatit® TP 207 and Ambersep® M4195 showed better Ni²⁺ adsorption performance
- Lewatit® SP showed better elution performance

Key results – Ni²⁺ pre-concentration



Initial conc. / mg L ⁻¹	Final conc. / mg L ⁻¹	Pre-concentration factor
0 ± 0.1	0 ± 0.1	0
2 ± 0.3	6 ± 0.3	3
4 ± 0.3	9 ± 0.2	2
6 ± 0.2	12 ± 0.1	2
8 ± 0.2	13 ± 0.1	2
10 ± 0.1	18 ± 0.1	2

→ developed workflow increased Ni²⁺ concentration by up to 3 times

- developed rapid (<10 min) pre-concentration method
- pre-concentration with
 non-hazardous chemicals
 → suitable for citizen science
- pre-concentration
 can be integrated
 with detection workflow
 with µPAD
- **further study** on optimisation to detect environmentally-relevant levels of Ni²⁺

Thank you for your attention

Method development for on-site freshwater analysis with preconcentration of nickel via ion-exchange resins embedded in a cafetière system and paper-based analytical devices for readout

Mila Sari¹, Samantha Richardson², Will Mayes³, Mark Lorch¹, Nicole Pamme^{1,4}

Scan to read our abstract

¹Department of Chemistry and Biochemistry, University of Hull, UK

²Department of Biological and Marine Science, University of Hull, UK

³Department of Geography, Geology, and Environment, University of Hull, UK

⁴Department of Materials and Environmental Chemistry, Stockholm University, Sweden