Spatio-temporal patterns of fluid-driven aseismic slip transients: implications for seismic swarms

Alexis Sáez¹, Brice Lecampion¹

¹École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Background - Motivation

- Common driving mechanisms:
 - Pore pressure diffusion

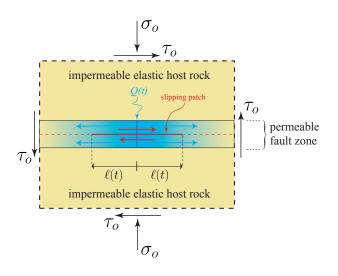
(e.g., Parotidis et al., JGR, 2005)

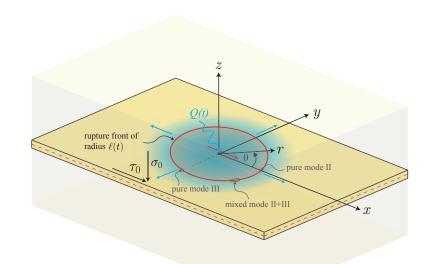
Aseismic slip

(e.g., Lohman & McGuire, JGR, 2007)

Evidence for coupled mechanism:
 Pore pressure → Aseismic slip → Seismicity

(e.g., Bourouis & Bernard, GJI, 2007, Wei et al., EPSL, 2015; Guglielmi et al., Science, 2015; Yukutake et al., JGR, 2020)

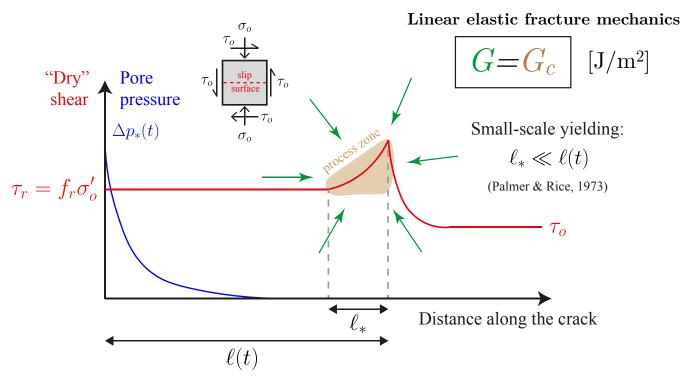

Spatio-temporal patterns?


2D & 3D physics-based models

Alexis Sáez

• 2D rupture: Mode II or III shear crack

3D rupture: Mixed-mode (II+III) circular crack


Assumptions:

Constant hydraulic properties, self-similar pore pressure diffusion

Energy balance at the rupture front

Assumptions:

Constant frictional fracture energy G_c , constant residual friction

Energy balance at the rupture front

Alexis Sáez

Ultimate regime

$$G = G_C \Rightarrow$$

Fracture energy term is ultimately negligible when:

$$t \to \infty$$
 and $\ell \to \infty$

$$f_r \Delta p_* (t) \sqrt{\ell(t)} \int_0^1 \frac{\Pi(\ell(t) \eta / \sqrt{4\alpha t})}{\sqrt{1 - \eta^2}} \eta^{\gamma} d\eta = \delta(f_r \sigma'_o - \tau_o) \sqrt{\ell(t)} + \frac{\sqrt{\pi}}{2} K_c^*$$

Fluid injection

Pre-stress & residual friction

Fracture energy

$$\Rightarrow F(\ell, t; p_1, ...) = 0$$

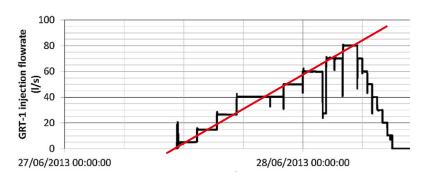
Family of solutions

Table 1: Temporal patterns of $\ell(t)$ for different modes of propagation and types of fluid source.

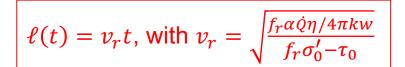
Type of fluid source	2D - Mode II or III	3D - Mixed mode II+III
Constant injection rate	$\ell(t) \propto (t - \sqrt{t})$ at early times (1) $\ell(t) \propto t$ at large times (1)	$\ell\left(t\right)\propto\sqrt{t}\left(1\right)$
Linearly increasing rate	$\ell(t) \propto (t^{3/2} - 1)/t$ at early times (2) $\ell(t) \propto t^2$ at large times (2)	$\ell(t) \propto \sqrt{t}e^{-t}$ at early times (2) $\ell(t) \propto t$ at large times (2)
Constant pressure	$\ell\left(t\right) \propto \sqrt{t} \left(3\right)$	$\ell\left(t ight) \propto t^{eta} \; (1)(4)$
37 · D ·	1 · (1) C (T	0 TT: T1 (DC 2000

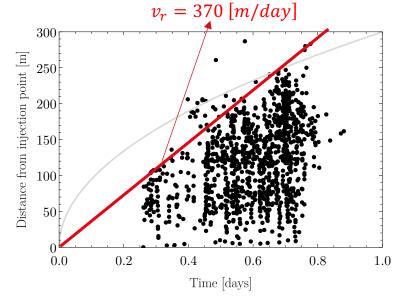
Notes: Derived in (1) Sáez, Lecampion, Bhattacharya & Viesca, JMPS, 2022.

(2) Sáez & Lecampion (in preparation). (3) Bhattacharya & Viesca, Science, 2019. (4) β between 0 and 1/2.


Alexis Sáez

Example of application – Borehole fluid injection

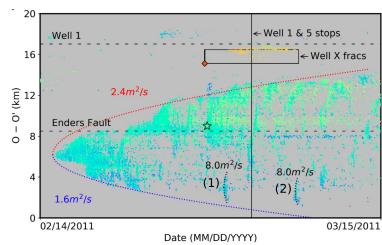

Table 1: Temporal patterns of $\ell(t)$ for different modes of propagation and types of fluid source.


	1 1	3
Type of fluid source	2D - Mode II or III	$3\mathrm{D}$ - Mixed mode II+III
Constant injection rate	$\ell(t) \propto (t - \sqrt{t})$ at early times (1) $\ell(t) \propto t$ at large times (1)	$\ell\left(t\right) \propto \sqrt{t} \left(1\right)$
Linearly increasing rate	$\ell(t) \propto (t^{3/2} - 1)/t$ at early times (2) $\ell(t) \propto t^2$ at large times (2)	$\ell(t) \propto \sqrt{t}e^{-t} \text{ at early times (2)}$ $\ell(t) \propto t \text{ at large times (2)}$
Constant pressure	$\ell\left(t\right) \propto \sqrt{t} \left(3\right)$	$\ell(t) \propto \uparrow (1)(4)$

Notes: Derived in (1) Sáez, Lecampion, Bhattacharya & Viesca, JMPS, 2022. (2) Sáez & Lecampion (in preparation). (3) Bhattacharya & Viesca, Science, 2019. (4) β between 0 and 1/2.

Baujard et al., Geothermics, 2017

Data from Lengliné et al., GJI, 2017



Diffusive seismic swarms

Table 1: Temporal patterns of $\ell(t)$ for different modes of propagation and types of fluid source.

Type of fluid source	2D - Mode II or III	3D - Mixed mode II+III
Constant injection rate	$\ell(t) \propto (t - \sqrt{t})$ at early times (1) $\ell(t) \propto t$ at large times (1)	$\ell\left(t\right)\propto\sqrt{t}\left(1\right)$
Linearly increasing rate	$\ell(t) \propto (t^{3/2} - 1)/t$ at early times (2) $\ell(t) \propto t^2$ at large times (2)	$\ell(t) \propto \sqrt{t}e^{-t}$ at early times (2) $\ell(t) \propto t$ at large times (2)
Constant pressure	$\ell\left(t\right) \propto \sqrt{t} \left(3\right)$	$\ell\left(t\right) \propto t^{\beta} \left(1\right) \left(4\right)$
Notes Deciding (1) Control Decides and William IMDC 0000		

Notes: Derived in (1) Sáez, Lecampion, Bhattacharya & Viesca, *JMPS*, 2022. (2) Sáez & Lecampion (in preparation). (3) Bhattacharya & Viesca, *Science*, 2019. (4) β between 0 and 1/2.

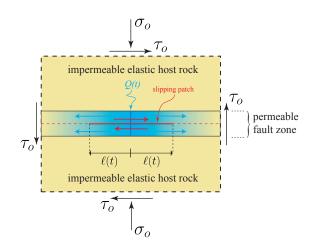
$$\ell(t) = \sqrt{\alpha_{slip}t}$$

$$\alpha_{slip} = \lambda^2 \alpha_h$$

With
$$\lambda = \sqrt{\frac{1}{8\pi} \frac{f_r Q \eta/kw}{f_r \sigma_0' - \tau_0}} \gg 1$$

(for critically-stressed faults)

Reconciling high diffusivities!


Summary

- Family of **physics-based solutions** for fluid-driven **aseismic slip** fronts $\ell(t)$
- Many different spatio-temporal patterns may occur depending on fluid source and mode of sliding, among others.
- For instance,
 - We used a seismic swarm of known fluid source to show under which conditions a swarm may be expected to migrate linearly with time if dominated by aseismic slip.
 - We speculate that some **diffusive seismic swarms** (\sqrt{t}) may be driven by **diffusive aseismic slip** in 3D, which **reconciles** relatively **high diffusivities** inferred in many cases ($\alpha_{slip} = \lambda^2 \alpha_h$, with $\lambda \gg 1$).
- Finally, we expect our solutions to provide a simple means to interpret
 observations of seismic swarms, in the framework of coupled fluid flow and aseismic
 slip processes.

Alexis Sáez

Thank you!

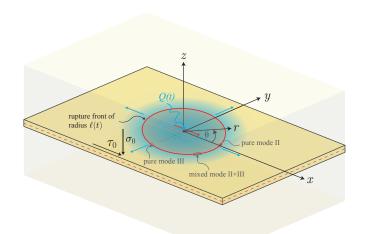


Table 1: Temporal patterns of $\ell(t)$ for different modes of propagation and types of fluid source.

Table 1. Temporal patterns of t (t) for unietent modes of propagation and types of find source.			
Type of fluid source	2D - Mode II or III	3D - Mixed mode II+III	
Constant injection rate	$\ell(t) \propto (t - \sqrt{t})$ at early times (1) $\ell(t) \propto t$ at large times (1)	$\ell\left(t\right) \propto \sqrt{t} \left(1\right)$	
Linearly increasing rate	$\ell(t) \propto (t^{3/2} - 1)/t$ at early times (2) $\ell(t) \propto t^2$ at large times (2)	$\ell(t) \propto \sqrt{t}e^{-t}$ at early times (2) $\ell(t) \propto t$ at large times (2)	
Constant pressure	$\ell\left(t\right) \propto \sqrt{t} \left(3\right)$	$\ell\left(t ight)\propto t^{eta}\;\left(1 ight)\!\left(4 ight)$	

Notes: Derived in (1) Sáez, Lecampion, Bhattacharya & Viesca, JMPS, 2022. (2) Sáez & Lecampion (in preparation). (3) Bhattacharya & Viesca, Science, 2019. (4) β between 0 and 1/2.

