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 What is the impact of the feedback of air-
sea heat fluxes on sea surface
temperature?

Otto, 2017; Schaller et al., 2016; Mitchell et al., 2017; Christidis and Stott, 2014; @
Frankignoul et al., 2004; Park et al, 2005; Bishop et al., 2017; Patrizio and Thompson, 2022 Sharimg not
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Key result:

The feedback of surface fluxes on sea surface temperature
strongly decreases the spread of seasonal means
and
significantly improves the realism of air-sea interactions,
but

has only limited consequences
for extratropical land climate
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Modeling framework: HadSM4

* N144 atmosphere + Slab Ocean
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b) -2 imposing circulation anomalies
* r is calibrated from observed SST?
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!Operational Sea Surface Temperature and Sea Ice Analysis (Donlon et al 2012)
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Observed Ocean heat Flux-forced ensemble SST-reimposed ensemble
SST convergence (Slab Ocean) (prescribed SST)
calibration forcing : diagnosing 5T :
! and sea ice !
* Infrastructure of climateprediction.net phermodynamic hermodynamic

* Two 578-member ensembles with and
without active thermodynamic feedbacks

» SST, seaice: 578 unique, identical trajectories

* = clear identification of impact of
presence/absence of feedback

Guillod et al., 2017; Massey et al., 2015; Mitchell et al., 2017 @
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Global air-sea fluxes
* Disabling the feedback ...

e ...increases® mean net heat flux
due to shortwave radiation

e ...increases® variability due to
latent heat flux

* 2 Thermodynamic feedbacks
strongly constrain the seasonal
variability of surface fluxes!

| Net (Wm~=2, %)

Shortwave Longwave  Latent

Sensible

DJF mean 1.6 (16.9%) 1.6 (09%) 0.1 (-02%) -0.1(0.1%) -0.1 (0.4%)
DJF spread 6.5 (46.8%) 0.5 (6.7%) 0.2 (4.7%) [BEIE8B%) 0.8 (27.1%)
5-daily anomalies | 1.0 (1.8%) 0.4 (1.4%) 0.1 (0.7%) 0.5 (1.5%) 0.4 (3.3%)

Feedback active = feedback inactive

Ensemble Mean

Ensemble spread 5-day variability

Net heat flux




Why the increase in variability?

* Understand the local Slab-atmosphere system
* Increase in heat flux variance, decrease in the spread of surface air temperature
* Changed sign of SST-flux covariance

* Atmosphere-driven <—  ocean-driven /—\

feedbacks active feedbacks inactive
variability sink variability source 1004 m= F'lux-forced
me= SS'T-reimposed
a) Heat content change & Q-Flux c) SST

b) Surface heat flux d) Surface air temperature
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Time lag structure

* More flux memory without
the feedback

* More realistic cross-

correlation structure with
feedback

* Constant mixed layer depth
inflates CCF structure

e - Big improvement from
including active feedback!

correlation

correlation
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Impacts

* Disabling the feedback causes...

.. little dynamical change

.. low-latitude surface warming (increased heat flux)
.. small signals in Northern extratropics over land

.. increased precipitation mean and variance in (sub-)

tropical Southern hemisphere

.. DJF precipitation change up to 25% in Australia,

Southern Africa
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Extremes

* 10-year extremely wet winters
generally become more likely
(increase in precipitation
mean and/or variance)

* Most significant over the
ocean

* Land regions: Australia,
Southern Africa, Middle East

Return time of winter precipitation
(baseline: 10 years)
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Conclusion
* New framework for investigating importance of thermodynamic air-sea feedbacks
* Large ensemble study to investigate impact on extreme events

* Big improvement in representing surface feedbacks

* Important part of model hierarchy

* General increase in DJF mean ensemble spread of fluxes, precipitation, ...

* Regional changes in extremes

e Changes most pronounced in (sub-)tropics, Southern hemisphere
 Limited dynamical effects (e.g. no evidence for changing SST-NAO relationship)

 Companion work investigates the impact of changing heat convergence on dynamics

and im Pa cts Questions? Contact me: matthias.aengenheyster@physics.ox.ac.uk @
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