

Martin Schulthess

Supervision by Nina Kirchner

Motivation

- Millions of humans at risk by sea level rise (Hauser et al. 2020)
- Calving a major uncertainty for future sea level rise projections (Moore et al. 2013)
- Freshwater calving constitutes a simplified system

Background

Styles:

- Ice-fall
- Collapse
- Stack topple
- Waterline
- Buoyancy-driven subaqueous calving

Source: adapted from AntarcticGlaciers.org

Aim

 Develop a methodology that allows detecting and characterizing of calving events based on acoustic signature and validation by visual methods.

EGU22-12145 - Martin Schulthess

Objectives

- collect acoustic data near calving front record calving signal
- collect time-lapse imagery of the subaerial part of the glacier front ground truth evidence for calving
- collect high-resolution subaerial imagery of the calving front 3D models and DEM's as basis for volume measurements
- develop an algorithm identify calving events in acoustic signal
- synchronize data sets time-wise correlation by time-lapse imagery
- quantify + characterize calving events by parameters (volume, duration, continuity,...)

Field site – Present

14.-21. August 2020

Data sets and Methodology – Overview

Acoustic data

- Data collection
- Acoustic principles
- Detection algorithm event detection
- Detection algorithm event characterization

Time-lapse imagery

Photogrammetry

- Data collection
- Processing

Acoustic data - Data collection

2 Hydrophones

- ST500 (western) / ST300 (eastern)
- 59min .wav files, 96kHz sampling rate
- 2x Moorings: sand filled canisters, Hydrophones 5m above lake floor, at depth of 20m
- Data period: August 2020

18th 17:15 - 21st 09:14

Acoustic data – Acoustic principles

Signal-to-noise ratio:
$$SNR[dB] = 10 * log_{10} \left[\left(\frac{A_{signal}}{A_{noise}} \right)^2 \right]$$

NFFT (non-equispaced Fourier Transform):

>decrypts signal into its frequencies

Periodogram:

➤overall frequency distribution over signal period (window)

Training data ST500

- 2 training sets
- 1 training event each
- Training set 2: a second event

Periodogram

- Frequency spectrum:
 - 2 training events= 100Hz
 - 2 background noise= 1Hz

Filter:

- Bandpass:
 - 10Hz 10kHz

Filter

- Cut background noise 1Hz
- Butterworth filter
- Bandpass 10Hz 10kHz
- Rectangular window

SNR – implementation:

- Iterate Matlab snr-function
- Running signal window
- Fixed background noise

→ SNR data

2.4

SNR - threshold:

- SNR threshold = 40
- SNR>40 **→ detections**

- Cluster of detections
 - → 1 Acoustic peak

2.7

2.8

2.6

Acoustic detection algorithm - event characterization

Continuity of detection

Detections per second

Acoustic event threshold

20 detections per second

Seconds with detections

Time-lapse imagery

Cyclapse/GoPro:

- 18MP/12MP
- 5 frames/s
- Western/Eastern front

Processing:

- Manual investigation
- Periods of 10min
- Image recovery (night/fog)

Photogrammetry

DJI Mavic 2 Pro:

- 20MP, ~ 25min flights
- Resolution of cm's

Flight plan:

- 80% / 65% overlap
- Vertical / tilted camera

Trimble GEO7x d-GPS

- 7 GCP's
- Georeference

Photogrammetry

Agisoft Metashape:

- Textured 3D models
- DEM's
- Orthomosaic
- Georeferenced
- Measurement
 - Volume,
 - Length,
 - Elevation,...

Acoustics

Event data:

- 49 acoustic peaks
 - 28 in ST500
 - 46 in ST300
 - 24 in both
- 14 acoustic events
 - 9 in ST500
 - 13 in ST300
 - 8 in both
- ST500/ST300
 - ST300: 93% of total
 - ST500: ~60% of total
 - ST300 in ST500: 87%
 - ST500 in ST300: 57%

Time-lapse imagery

Ground-truth evidence

- 12 events
- 9 Locations
- Precise time

Photogrammetry

- 6 textured 3D models 4 days
- Evidence for 10 events in textured 3D models (+ volume)
- Volumes between 1 600m³
- 4 calvings > 200 m³; 6 calvings < 30 m³
- 4 calving events: no volume quantification

Synthesis

Time UTC	Volume [m³] calculated	Volume [m³] measured	Duration [s]	Detections ST 500	Detections ST300	max. Continuity ST500	max. Continuity ST300	Seconds w/detections ST500	Seconds w/detections ST300	max. Amplitude ST500	max. Amplitude ST300	Frequency peak [Hz] ST500	Frequency peak [Hz] ST300	2 separate peaks	Precursor	Calving style
17:16	6	6	2	8	0	8	0	1	0	0.0143	0.0112	88.3	79.7	strong		waterline
19:00	4	4	2	0	15	0	10	0	2	0.0165	0.0311	108.5	55.9	strong		waterline
13:02	16	16	2	0	32	0	33	0	1	0.0243	0.0318	44.9	45	weak		waterline
13:21	28	26	4	81	101	57	67	2	2	0.0512	0.0983	103.2	54.1	No	precursor	waterline
14:57	640	630	13	579	611	100	100	12	11	0.2403	0.3225	69	58.61	No	precursor	waterline
18:08	280	360	6	284	182	91	53	6	6	0.0867	0.0502	64.9	92.6	No		unclear (fog)
23:22	510	535	31	621	655	100	99	18	17	0.1511	0.1654	79	79.1	No	precursor	waterline
2:27	230	205	5	151	116	43	55	5	4	0.0775	0.0576	179.3	186.9	No	precursor	waterline
6:22			4	0	4	0	4	0	1	0.0121	0.0181	103.3	55.7	No		waterline
7:50			1	24	22	25	18	1	2	0.0633	0.0704	264	307.5	strong		waterline
15:09			12	115	126	46	53	4	4	0.0425	0.0386	206.9	89.2	No	precursor	submarine
17:51			1	13	20	13	21	1	1	0.0192	0.0437	74.2	64.6	No		unclear (size and signal)
8:04	6	1.5	1	7	15	7	15	1	1	0.0198	0.0312	104.2	179.9	weak		waterline
8:48	12	5	2	68	50	38	32	2	2	0.1918	0.2143	40.4	50.6	strong		ice-fall

Synthesis

Corr. to Volume

Detections: 0.92

• Sec. /w det.: 0.84

Continuity: 0.75

■ Duration: 0.62

• ST300/ST500: 95%

Discussion

Restrictions:

- Limited data period: 4 days delay
- Inactive glacier system: lake ice
- Fog during most active day of calving front

Discussion

Interpretation:

- Reflectance of water
- Volume measurement
- Calving style (TLC rate)
- Precursor

Discussion

Recommendations:

- Spectrogram
- Adjust flightplan: double grid,
- TLC closer to shore
- TLC automatic calving detection
- Compute 2021-2020 mass loss, front retreat, ice velocity
- Development of a basic model

Conclusion

- All objectives accomplished
- Correlation between characteristics of acoustic signal peaks and calving volume with multi-method approach
- Robust but sensitive detection algorithm
- Established possibility to detect small calving events and high accuracy

Please contact me:

Martin Schulthess

@M_Schulthess (Twitter)

m.schulthess@outlook.com

Have a look at my full Master Thesis about this topic:

