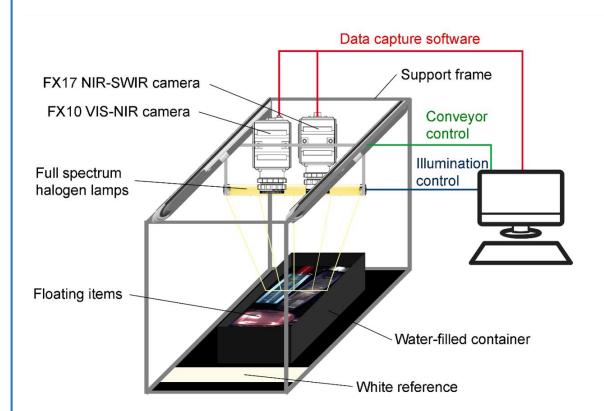
Background and Objectives

- There is a need for innovative approaches to monitor the presence and abundance of plastics in aquatic ecosystems
- Hyperspectral imaging mainly done in controlled environments, and it is a challenge to use this data in aquatic environments.
- Objective 1: Assess plastic signatures in natural environments
- Objective 2: Compare reflectance patterns of natural environments with controlled environments
- Objective 3: Use lab-data to detect plastics in field images

Contact: paolo.tasseron@wur.nl

Tasseron, P., Schreyers, L., Peller, J., Biermann, L., van Emmerik, T.



Contact: paolo.tasseron@wur.nl

Tasseron, P., Schreyers, L., Peller, J., Biermann, L., van Emmerik, T.

Experimental setup

Lab (controlled environment)

Field (riverbank)

Contact: paolo.tasseron@wur.nl

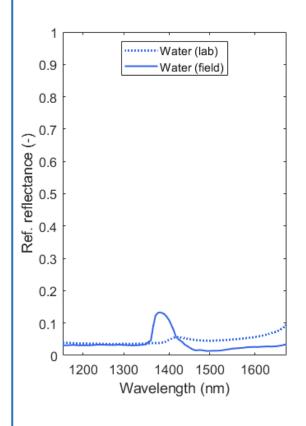
Tasseron, P., Schreyers, L., Peller, J., Biermann, L., van Emmerik, T.

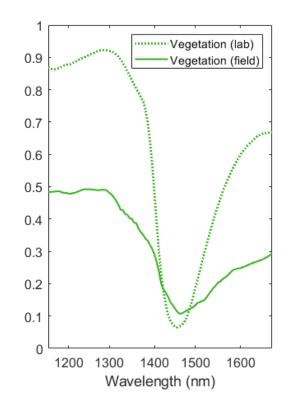
Data preparation & ROI selection

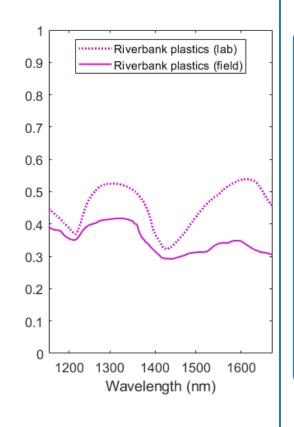
- Reflectance correction
- Intensity normalisation

Classifiers

- Support Vector Machine (SVM)
- Spectral Angle Mapper (SAM)
- Spectral Information Divergence (SID)



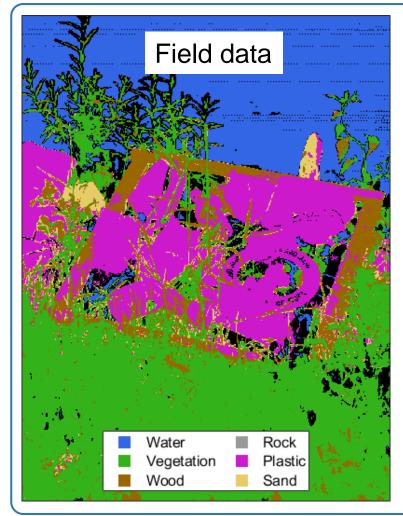



Contact: paolo.tasseron@wur.nl

Tasseron, P., Schreyers, L., Peller, J., Biermann, L., van Emmerik, T.

Objective 1 & 2: Reflectance patterns – lab and field

Differences


- Signal intensity
- Absorption window of H₂O molecules, causing low signal-to-noise ratio
- Less pronounced absorption peaks

Contact: paolo.tasseron@wur.nl

Tasseron, P., Schreyers, L., Peller, J., Biermann, L., van Emmerik, T.

Objective 3

- Two classifications using SAM
- Black pixels indicate unclassified pixels, that do not fall within the decision boundary region.
- Using lab data for field detection of plastics with accuracies up to 93.6%

Contact: paolo.tasseron@wur.nl

Tasseron, P., Schreyers, L., Peller, J., Biermann, L., van Emmerik, T.

Concluding remarks

- Lab-based data can be used to classify field-based images
- Dynamic outside environment
 - Stationary samples
 - Clouds
 - Atmospheric transmittance
- (Open-access) Reference libraries

Future research

- Explore less accurate, cheaper sensors
 - Multispectral
 - Wider bands
- Larger image datasets captured with different environmental conditions (clouds / rainy / windy)
- Long term detection and monitoring of plastics