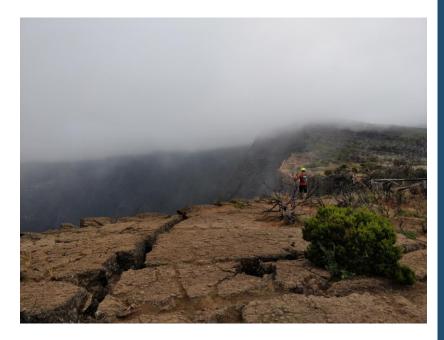


A telescope based on Scintillator technology for assessing massive rock falls – la Reunion island

Simon Bouteille, Catherine Truffert – IRIS Instruments


Nicole Huebert, Benoit Le Moigne, Kevin Samyn - BRGM

Jacques Marteau – IP2I Lyon

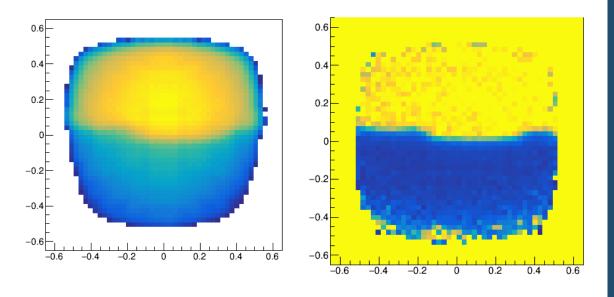
Geological context

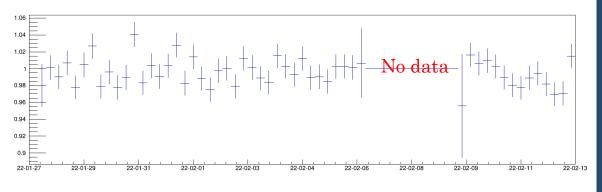
- · La Réunion, a volcanic island in the Indian ocean
 - An active volcano at the east
 - An extinct one at the west
 - Three cirques formed by erosion and collapse
- The west part of the Mafate cirque
 - 800m high steep Maïdo cliff
 - Small village (Roche-Platte)
 - Large wildfire in late 2020
 - Top of the cliff is fractured in the first 100m
 - Risk of boulder fall for the houses below
 - Trajectography simulations made by the BRGM to asses the risk
 - Need to better understand the top of the cliff to guarantee the security of the inhabitants
- Questions to answer
 - How deep and large are the fractures
 - What are their shape
 - What is the role of the rock water dynamics content for the stability of the structure

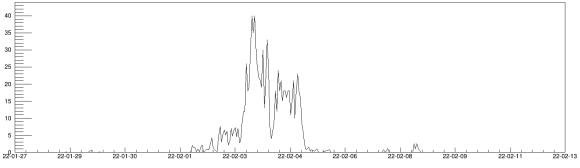
Instrument technology

- Scintillator based instrument
 - Developed by IP2I/Lyon
 - Similar to instruments deployed by DIAPHANE (Guadeloupe)
 - 2.5×80 cm scintillator bars (32 by plane)
 - 80 × 80cm active area consisting of 3 detecting planes
 - 63° field of view
 - Fully autonomous (40W)
- Mechanical structure revised by IRIS
 - Industrialisation of the instrument
- Use of 150kg of steel for electron shielding

Field test presentation


- First tests at BRGM premises showed the instrument did not suffer from transport
- Installed in the forest officer shelter in Roche-Platte
- Village is isolated from common services
 - Electrical supply by shelter solar panels with battery and inverters
 - Additional battery buffer to power the instrument
 - Network connection through 4G (ISP antenna at the top of the cliff)
 - No road network: instrument was brought by helicopter
- Data taking is ongoing since 23/11/2021
 - Interrupted during Batsirai hurricane (power failure in early February 2022)
- 30M muons reconstructed so far





Results

- Calibration run made on site pointing away to the cliff
 - 24h of data
- Data consists of 5 months of data taking
 - 30M muons
- Results are still preliminary since the analysis is ongoing
- At this point it is not possible to clearly assess the mean density variations
 - Computation of the muon path length through rock is ongoing thanks to the precise DEM
- Pluviometry data from the Batsirai event might show water content variations
 - Muon relative flux seems to steadily decrease after the event as if the water is drained from the rock
 - Unfortunately the lack of data just after the hurricane seems crucial

Future of the mission

- Data taking is prolongated
 - At most to november 2022
- Data analysis is only at the beginning
 - Need of correlation to meteorological data
 - In particular to rainfall
 - Other survey has been conducted at the top of the cliff
 - Extensometer installed in the fractures
- If the risk is confirmed, the instrument can be moved
 - New point of view
 - For instance closer to the cliff to better scan the bottom

Conclusion

- Thanks to all the team in continental France and in the Reunion island the mission is a success so far
- This proves that the industrialisation of such instrument was correctly done
 - It will be on the market soon
- Industrial grade instruments bring the muography closer to being in the standard toolbox of geophysicists