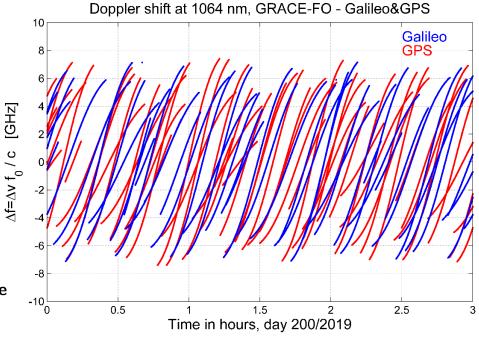

Laser GNSS Receiver for LEO POD, Laser Occultation and Time&Frequency Transfer of Optical Clocks in the Timing Labs

Drazen Svehla

TU München (via ETH Zurich)

Laser GNSS Receiver in LEO


CW-laser

Continuous-Wave (CW) Laser

- Stability $<5 \times 10^{-15}$ at 1 s
- Linewidth <2 Hz
- With cavity from NPL (LISA mission)
- Up to 1 kW power

No atmosphere in LEO One could improve LEO attitude (quadrant photodiode)

Laser beam steering in LEO

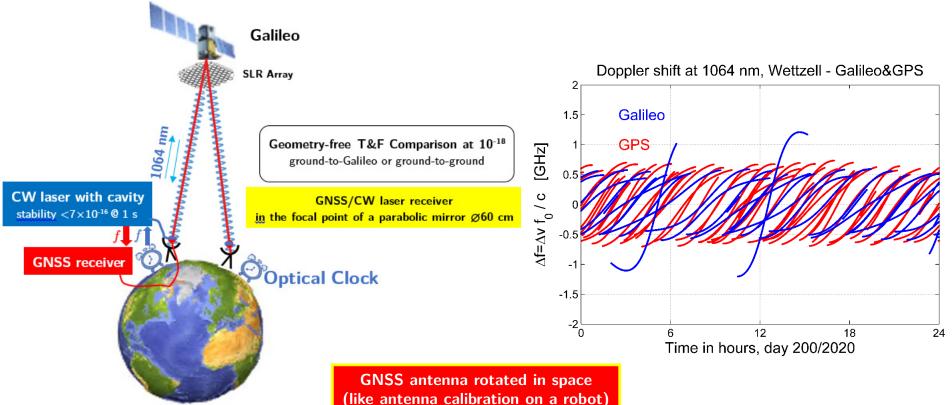
"Sinopta" laser steering terminal for LEO steering over 360°/90°

Spatial Light Modulator steering over 24°

Link Budget for CW Laser: LEO, Ground, Moon

Link Budget:

$$n_r = \frac{E_t \lambda}{hc} G_t \sigma_{ocs} \bigg(\frac{1}{4\pi R^2} \bigg)^2 A_r T_a^2 T_c^2 \eta_t \eta_r \eta_d \label{eq:nr}$$


Gaussian Beam:

$$\theta_t = \frac{\lambda}{\pi \omega_0}$$

$$G_t(\theta) = \frac{8}{\theta_t^2} e^{-2\left(\frac{\theta}{\theta_t}\right)^2}$$

Link budget parameter	GRACE-FO – Galileo	Ground – Galileo	Ground – Moon
Transmitted power of a CW laser	200 W	1 kW	1 kW
$\sigma_{o\!c\!s}$ optical cross section for GNSS (Pearlman, 2008) and Moon (Arnold, NASA TN)	$45 - 80 \times 10^6 \text{ m}^2$	$45 - 80 \times 10^6 \text{ m}^2$	$1400\times10^6~\mathrm{m}^2$ 300 corner-cubes
Radius for the aperture area of the receiving optics A_r	$0.15~\mathrm{m}$	$0.30~\mathrm{m}$	$0.50~\mathrm{m}$
Gaussian beam divergence half-angle, θ_{t}	0.47"	0.23"	0.14"
Fine pointing error (steering in steps of 0.01 [*]), θ	0.201	0.20"	0.101
${\cal G}_t$ transmitter gain	1.1×10^{12}	1.4×10^{12}	6.3×10^{12}
T_a^2 Two-way atmospheric transmission (Degnan, 1993), (Matthews 2020)	1.0	0.5	0.5
T_c^2 Two-way cirrus transmission (<u>Degnan</u> , 1993)	1.0	0.5	0.8
η_t efficiency of the transmitting optics (<u>Degnan</u> , 1993)	0.9	0.9	0.9
η_r efficiency of the receiving optics (Degnan, 1993)	0.9	0.9	0.9
η_d is the detector efficiency (photodiode sensitivity, Hamamatsu) see also (Jennrich & Heinzel, 2013),	0.7 A/W	$0.7 \frac{A}{W}$	$0.7 \frac{A}{W}$
Received laser power from a CW laser	16.5 pW	100.1 pW	507.2 fW (1.5 pW)

Hamamatsu (Japan) confirmed InGaAs photodiode for all three cases

CW-Laser for T&F Transfer at 10⁻¹⁸ for Optical Clocks

Laser Cavity (NPL&PTB)
can provide microwave GNSS
frequency more stable than H-maser
on GNSS (via frequency comb)

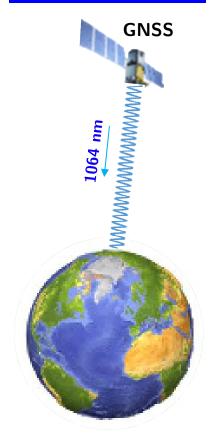
(like alitellia Calibration on a robot

With 'phase clock' approach for GPS we introduced in 2004 for LEOs, we managed to get T&F transfer down to 10^{-16} level

CW-Laser Onboard GNSS Satellites

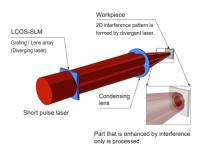
"two-way"

CW-laser in LEO, signal reflected from GNSS

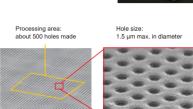

$$n_r = \left(E_t \frac{\lambda}{hc}\right) G_t \sigma_{ocs} \left(\frac{1}{4\pi R^2}\right)^2 A_r T_a^2 T_c^2 \eta_t \eta_r \eta_d \qquad n_r = \left(E_t \frac{\lambda}{hc}\right) G_t \left(\frac{1}{4\pi R}\right)^2 A_r T_a^2 T_c^2 \eta_t \eta_r \eta_d$$

$$\left(\sim \frac{1}{R^4}\right)$$

"one-way" **CW-laser onboard GNSS satellites**


$$n_r = \left(E_t \frac{\lambda}{hc}\right) G_t \left(\frac{1}{4\pi R}\right)^2 A_r T_a^2 T_c^2 \eta_t \eta_r \eta_c \left(\frac{1}{R^2}\right)$$

Link budget	GRACE- FO – Galileo	Ground – Galileo	Ground – Moon
Two-way: Transmitted power of a CW laser	200 W	1 kW	1 kW
One-way: Transmitted power of a CW laser (1 nW received)	20 mW	$15\mathrm{mW}$	20 mW


We need 1-20 mW laser power transmitted from a GNSS to guarantee the received power of 1 nW (GRACE-FO) or 200 pW (LISA) with down to 10 cm collecting optics

Carrier-phase on a continuous-wave (CW) laser

ITO layer removal Laser: Manufactured by Hamamatsu Ultra-short pulse laser MOIL-ps L11590 SHG 515 nm

With SLM, one can split laser beam into thousands of separate laser beams and steer them independently

(process by wavelength order)