

Morphology of the ionospheric convection pattern during time-dependent solar wind and magnetospheric driving

Adrian Grocott and Maria-Theresia Walach
Space and Planetary Physics Group

Introduction

- Expanding-Contracting Polar Cap (ECPC) model requires unbalanced dayside and nightside reconnection to each drive a polar cap voltage (Cowley and Lockwood, 1992; Milan et al., 2021).
- Evidenced by the observation of solar wind (e.g. Ruohoniemi and Greenwald, 1998) and substorm (e.g. Grocott et al., 2002) driven enhancements to V_{PC} .
- Demonstrated statistically using IMF B_Z and the AL index as proxies for dayside and nightside reconnection, respectively (Lockwood and McWilliams, 2021).

Lockwood and McWilliams (2021)

- For a fixed AL, increasingly negative B_Z is associated with increased V_{PC}.
- For a fixed (but not strongly) negative B_Z, increasingly negative AL is associated with increased V_{PC}.

Introduction

• The ECPC model also dictates that dayside and nightside reconnection should drive independent components of the convection pattern.

Introduction

- The ECPC model also dictates that dayside and nightside reconnection should drive independent components of the convection pattern.
- In this study we use an archive of SuperDARN data to investigate these two components based on the locations of the foci of the twin vortex convection.
- We use SuperDARN convection maps (Ruohoniemi and Baker, 1998) that satisfy:
 - $n_{vecs} > 250$
 - MLT Φ_{min} > 12 and MLT Φ_{max} < 12

- Wide spread of foci locations, particularly on the nightside
- Typically 75° 85° latitude on the dayside (within 2 hrs MLT of the duskdawn meridian).
- Typically 70° 80° latitude on the nightside (within 4 hrs MLT of the duskdawn meridian).
- 98% of map foci fall within these limits.

- Wide spread of foci locations, particularly on the nightside
- Typically 75° 85° latitude on the dayside (within 2 hrs MLT of the duskdawn meridian).
- Typically 70° 80° latitude on the nightside (within 4 hrs MLT of the duskdawn meridian).
- 98% of map foci fall within these limits.
- Define: $dMLT = MLT \Phi_{min} MLT \Phi_{max}$

- Wide spread of foci locations, particularly on the nightside
- Typically 75° 85° latitude on the dayside (within 2 hrs MLT of the duskdawn meridian).
- Typically 70° 80° latitude on the nightside (within 4 hrs MLT of the duskdawn meridian).
- 98% of map foci fall within these limits.
- Define: $dMLT = MLT \Phi_{min} MLT \Phi_{max}$

- Filtering by IMF and AL there are clear differences.
- Peak occurrence on left is slightly pre-dusk, but also slightly pre-dawn, higher latitude.
- Peak occurrence on right is post-dusk and pre-dawn, extending to lower-latitudes.
- Greater spread for nightside foci.

Foci Separation

- Foci separation has a mean of 12.8 hrs.
- Minimum separation is ~4 hrs.
- Maximum separation is ~20 hrs.

Foci Separation vs. IMF B_Z and AL

- At fixed, modest AL, see a clear Bz dependence of dMLT
 - Stronger $-B_Z \rightarrow$ dayside foci

Foci Separation vs. IMF B_Z and AL

- At fixed, modest AL, see a clear
 Bz dependence of dMLT
 - Stronger $-B_Z \rightarrow$ dayside foci
- At fixed, zero Bz, also have a dependence of dMLT on AL
 - Stronger AL → dayside foci

Foci Separation vs. IMF B_Z and AL

- At fixed, modest AL, see a clear Bz dependence of dMLT
 - Stronger $-B_Z \rightarrow$ dayside foci

- At fixed, zero Bz, also have a dependence of dMLT on AL
 - Stronger AL → dayside foci
- Strong AL requires strong dayside driving

Foci Separation

Results

- Dayside reconn. dominant:
 mean dMLT = 11.5 ± 1.6 hrs
- Nightside reconn. dominant: mean dMLT = 14.7 ± 2.7 hrs

Conclusions

- Results agree with ECPC model
- Overlap in the distributions due to AL dependence on B_z

Average SD Data Coverage

- Average SuperDARN data coverage is shown for different Universal Times
- Non-uniform locations of the radars gives some UTdependence of the coverage
- With a coverage filter to remove low (n<250) maps....
- Better highlights how the coverage gap rotates with UT.
- Q: Is this responsible for the observed foci displacements?

UT dependence

- Very weak UT dependence of dMLT
- No UT dependence of IMF B_Z (as expected!)
- Weak UT dependence of AL (station asymmetries?)

Comparison with ECPC model

- Milan et al. (2021) characterized the ECPC phases for 2010.
- Average values of dMLT for 4 of their states:
- ² 11.8 hrs
- 4 12.1 hrs
- ³ 11.7 hrs
- 6 12.7 hrs
- Inconclusive...

Conclusions

- The two-component convection pattern discussed by Cowley and Lockwood (1992) is apparent in the SuperDARN convection maps, with a ±1.5 hr displacement of the cell foci for dayside and nightside driven flow.
- It is harder to isolate the dayside component, because strong dayside driving produces a strong tail response.
- The nightside component persists following a northward turning, so is more readily apparent.
- Further work is looking at 1. asymmetries in the dusk and dawn focilocations and 2. comparison with known intervals of polar cap expansion and contraction.