Modeling the Depth Dependence of ¹³⁷Cs Concentration in Lake Onuma

Kentaro Akasaki¹

Yuko Hatano¹, Eiichi Suetomi¹, Yukiko Okada², Kyuma Suzuki³, Shun Watanabe⁴

¹University of Tsukuba, ²Tokyo City University, ³Gunma Prefectural Fisheries Experimental Station

Background

- Lake Onuma(Gunma Prefecture, Japan)190km SW from FDNPP
- 137Cs was detected from fish
- •1.5 years after the accident
- → activity concentration decrease slowed down

Lake Onuma

[1] Suzuki, K. et al, Sci. Tot. Env. (2018)

Objective

 Reproduce long-term temporal changes in the activity concentration

Reproduce vertical distribution of the activity concentration

Method

Time Fractional Diffusion Equation

$$\frac{\partial p}{\partial t} = {}_{0}\mathcal{D}_{t}^{1-\alpha} \left[K \frac{\partial^{2} p}{\partial x^{2}} \right]$$

$${}_{0}\mathcal{D}_{t}^{\beta}f(t) := \frac{1}{\Gamma(1-\beta)} \frac{d}{dt} \int_{0}^{t} \frac{f(t')}{(t-t')^{\beta}} dt'$$

fractional derivatives(Riemann-Liouville type)

[2]

[2] Sk Zeeshan, A., et al., Proc. R. Soc. A. (2016)

Solving Equation

$$\frac{\partial p}{\partial t} = {}_0 \mathcal{D}_t^{\ 1-\alpha} \left[K \frac{\partial^2 p}{\partial x^2} \right] \qquad \text{separation of variables} \qquad \frac{d^2 X}{dx^2} = -\frac{\lambda}{K} X$$

$$p=X(x) \cdot T(t)$$

$$\frac{d^2X}{dx^2} = -\frac{\lambda}{K}X$$
 (second-order ODE)
$$\frac{dT}{dt} = -\lambda \cdot {}_0 \mathcal{D}_t^{1-\alpha}[T] \qquad \bullet \bullet \bullet (*)$$

Laplace Transform of

Eq.(*)

$$\hat{T}(s) = T_0 \frac{1}{s + \lambda s^{1-\alpha}}$$

$$= T_0 \frac{1}{s} \frac{1}{1 + (\tau s)^{-\alpha}} \quad (\lambda = \tau^{-\alpha})$$

Inverse transform term-by-term

$$(R [\alpha] > -1)$$

$$T(t) = T_0 \cdot E_\alpha \left(-(t/\tau)^\alpha \right)$$

$$p(x,t) = \left\{ C_1 \cos\left(\sqrt{\frac{\lambda}{K}}x\right) + C_2 \sin\left(\sqrt{\frac{\lambda}{K}}x\right) \right\} \qquad E: \text{Mittag-Leffler function}$$

$$E: \text{Mittag-Leffler function}$$

$$E_{\alpha}(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}$$

Comparison with time series

Comparison with vertical distribution

Discussion

Difference of distribution between
 Particulate and Dissolved ¹³⁷Cs

- ◆Diffusion coefficient→varies with temperature

Should be considered in the model?

[3] Watanabe S., et al., KEK Proc. (2019)

Fig.2 Vertical profiles of ¹³⁷Cs concentration of the lake water in Lake Onuma on August 22, 2017. Gray zone indicates thermal stratification. [3]

Conclusion

 Reproduced both time series and vertical distribution with the Time Fractional Diffusion Equation.

 Depth profile suggested the migration of ¹³⁷Cs from bottom sediments.

References

- [1] Suzuki, K. et al., Radiocesium dynamics in the aquatic ecosystem of Lake Onuma on Mt. Akagi following the Fukushima Dai-ichi Nuclear Power Plant accident, Sci. Tot. Env., 622-623, 1153-1164, (2018).
- [2] Sk Zeeshan Ali, Subhasish Dey, Mechanics of advection of suspended particles in turbulent flow, *Proc. R. Soc. A*, **472**: 20160749 (2016).
- [3] Watanabe, S., For elucidate of bottom stop phenomenon in ¹³⁷Cs concentration in wakasagi *hypomesus nipponensis* of Lake Onuma on Mt. Akagi, *KEK Proc.*, **2019-2**(2019).

