Variation in vulnerability to seawater intrusion with response to change in groundwater level in the coastal region of Sankaraparani river basin, India

RamyaPriya Ramesh

Manivannan Vengadesan

Elango Lakshmanan

Introduction

- Over pumping of groundwater major concern
- Around 982 km³/year irrigation (75%) domestic (17%) industries (8%)
- Groundwater over extraction causes
 - Decrease in groundwater resources aquifer over exploitation
 - Coastal region Seawater Intrusion

Margat and Gun (2013)

Seawater Intrusion – World Scenario

Seawater Intrusion – Indian Scenario

Objective

• To understand the vulnerability of coastal aquifer to seawater intrusion in Sankaraparani river basin

Study Area

Puducherry – Tourists Attraction

White Town – French Settlement

Oussudu Lake

Geology and Hydrogeology

Methodology

#EGU22

Collection of Groundwater Samples

Upper aquifer (Depth < 50m): 23 wells **Lower aquifer (Depth > 50m):** 12 wells

Period of sampling	No. of samples
June 2017	35
June 2018	35
June 2019	35
Total	105

Variation in Groundwater Level

Geochemical Parameters in Groundwater

Parameters	Units	Min	Max
рН	-	6.0	8.1
Electrical Conductivity	(µS/cm)	324	7710
Calcium (Ca ²⁺)	(mg/l)	15	463
Magnesium (Mg ²⁺)	(mg/l)	11	185
Sodium (Na+)	(mg/l)	28	687
Potassium (K ⁺)	(mg/l)	1	89
Chloride (Cl ⁻)	(mg/l)	18	2034
Sulphate (SO ₄ ²⁻)	(mg/l)	16	359
Bicarbonate (HCO ₃ -)	(mg/l)	122	775

#EGU22

Hydrogeochemical Variation in Coastal Aquifers

Legend

- Lower Aquifer
- Upper Aquifer
- 1 Ca-HCO₃
- 2 Na-Cl
- 3 Ca-Mg-Cl
- 4 Ca-Na-HCO₃
- 5 Ca-Cl
- 6 Na-HCO₃

Upper Aquifer – Na-Cl, Ca-Na-HCO₃

Lower Aquifer – Ca-HCO₃, Ca-Na-HCO₃

(*Piper 1953*)

Variation in Geochemical Signatures

Upper Aquifer

 $EC > 3000 \mu S/cm$

(Karahanoglu 1997)

0.86 < Na/Cl < 1

(Vengosh and Rosenthal 1994)

 $Cl/HCO_3 > 6.6$

(Todd 1959)

Variation in Geochemical Signatures

Lower Aquifer

(Karahanoglu 1997)

(Vengosh and Rosenthal 1994)

(Todd 1959)

Seawater Intrusion in Multi Aquifer

(Manivannan and Elango 2021)

Extent of Seawater Intrusion

Geochemical Indicators

EC Na/Cl Cl/HCO₃

43% of Groundwater Samples

Affected by Seawater Intrusion

Extent of Seawater Intrusion

~3 km in the Upper Aquifer

GALDIT Index

$$GALDIT = \frac{(W_{1} \times G_{R}) + (W_{2} \times A_{R}) + (W_{3} \times L_{R}) + (W_{4} \times D_{R}) + (W_{5} \times I_{R}) + (W_{6} \times T_{R})}{\sum_{i=1}^{6} W_{i}}$$

Where,

W₁ to W₆ are the weights assigned to each parameter,

 G_R , A_R , L_R , D_R , I_R and T_R represent the corresponding rating of each of the parameters.

GALDIT Index	Category
< 2.5	Very Low
2.5 - 5.0	Low
5.0 - 7.5	Moderate
7.5 - 10	High

(Chachadi & Lobo-Ferreira 2001)

GALDIT Parameters

> 2.0

Parameters	Weight	Range	Rating	Parameters	Weight	Range	Rating
Groundwater	1	Confined	10	D istance from	4	< 500	10
occurrence		aquifer		the coast (m)		500 - 750	7.5
		Unconfined	7.5			750 - 1000	5
		aquifer				> 1000	2.5
		Leaky confined	5	Impact of	1	> 2.0	10
		aquifer		seawater		1.5 - 2.0	7.5
		Bounded	2.5	intrusion		1.0 - 1.5	5
		aquifer		(Cl/HCO ₃)		< 1.0	2.5
A quifer hydraulic	3	> 40	10	Thickness of	2	> 10	10
conductivity (m/day)		10 - 40	7.5	aquifer (m)		7.5 - 10	7.5
		5 - 10	5			5 - 7.5	5
		< 5	2.5			< 5	2.5
L evel of	4	< 1.0	10				
groundwater		1.0 - 1.5	7.5				
head (m msl)		1.5 - 2.0	5				

(Chachadi & Lobo-Ferreira 2001)

Vulnerability of Coastal Aquifer to Seawater Intrusion

Vulnerability with Decrease in Groundwater Level

Vulnerability with Increase in Groundwater Level

Conclusions & Recommendations

- Upper aquifer is affected by seawater intrusion extent of 3 km
- Lower aquifer is not affected fresh groundwater
- Coastal region highly vulnerable to seawater intrusion increases from 1 km² to 3 km² during June 2018 to June 2019
- Coastal region low vulnerable to seawater intrusion decreases from 191 km² to 141 km² during June 2017 to June 2019
- If groundwater level decrease coastal region highly vulnerable to seawater intrusion is increased up to 10 km²
- If groundwater level increase coastal region not highly vulnerable to seawater intrusion
- It is recommend to increase groundwater recharge increase groundwater level prevent incursion of seawater into the aquifer

Manivannan Vengadesan 🗸

Postdoctoral Researcher, Department of Civil Engineering, <u>Indian Institute of Technology Madras</u>

Verified email at imail.iitm.ac.in - Homepage

Hydrogeology Groundwater Quality Seawater Intrusion Submarine Groundwater Di... Coastal Hydrogeology

Cited by		
	All	Since 2017
Citations	66	66
h-index	3	3
i10-index	3	3

Cited by

"Looking for Post Doctoral Researcher Position in Coastal Hydrogeology"

Kindly Contact

Dr. Manivannan Vengadesan M.Sc., Ph.D

mani.geo14@gmail.com

