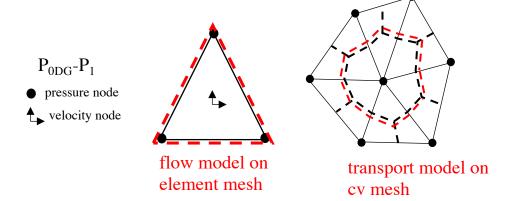


Discontinuous low order pressure formulation in CVFE method for simulating flow and transport in highly heterogeneous porous media

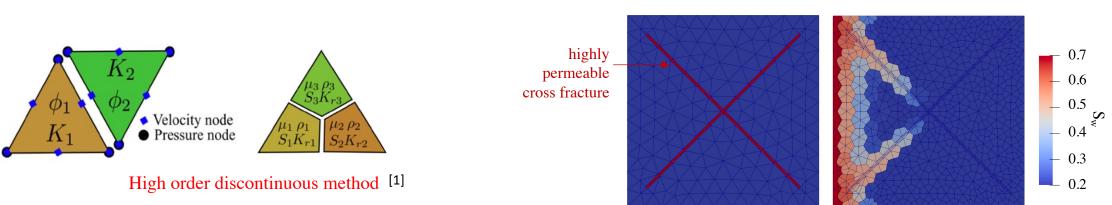
EGU22-12372

Jumanah Al Kubaisy, Pablo Salinas, and Matthew D. Jackson

Motivation



- CVFE method to capture flexible geometry
- Continuous CV discretization span element interfaces smears solution
- Discontinuous methods are computationally costly



^[1] Salinas, P., Pavlidis, D., Xie, Z., Osman, H., Pain, C., Jackson, M., 2018. A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media. Journal of Computational Physics.

pressure node

elements control volumes control volumes on the interface

high permeability low permeability

Multiphase flow and transport model

Darcy's law

$$\mathbf{v_t} = -\lambda_t \mathbf{K} \nabla p + \mathbf{f}$$

where

$$\lambda_t = \frac{k_{r,w}(S_w)}{\mu_w} + \frac{k_{r,nw}(S_w)}{\mu_{nw}}$$

Continuity equation

$$\nabla \cdot \mathbf{v_t} = q_t$$

Mass conservation

$$\phi \frac{\partial S_w}{\partial t} + \nabla \cdot (f_w \mathbf{v_t}) = q_w$$

s.t.

$$S_w + S_{nw} = 1.$$

fractional flow

$$f_w = \frac{\lambda_w}{\lambda_t}$$

Proposed (P_{1DG}-P_{0DG}) approach

- one to one element-control volume mapping for consistent discretization
- Flux continuity between elements/CV is applied in discretization
- Locally and globally mass conservative
- Discretized force balance equation $\mathbf{A} v_t + \mathbf{B} p = b_1$

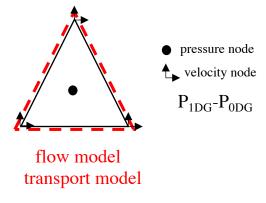
$$A v_t + B p = b_1$$

$$\sum_{\Omega_e \in \Omega} \sum_{j=1}^{N_v} \int_{\Omega_e} \mathbf{\Phi_i} v_{t,j} \mathbf{\Phi_j} d\Omega_e + \sum_{\Omega_e \in \Omega} \sum_{k=1}^{N_p} \int_{\Omega_e} \lambda_t \mathbf{K} \mathbf{\Phi_i} p_k \nabla \Psi_k d\Omega_e + \sum_{\Gamma_e \in \Gamma} \sum_{k=1}^{N_p} \oint_{\Gamma_e} \lambda_t \mathbf{K}_h \mathbf{n}. \Big(\mathbf{\Phi_i} \Psi_k (p_k - \tilde{p}_k) \Big) d\Gamma_e = \mathbf{0},$$
 Harmonic permeability

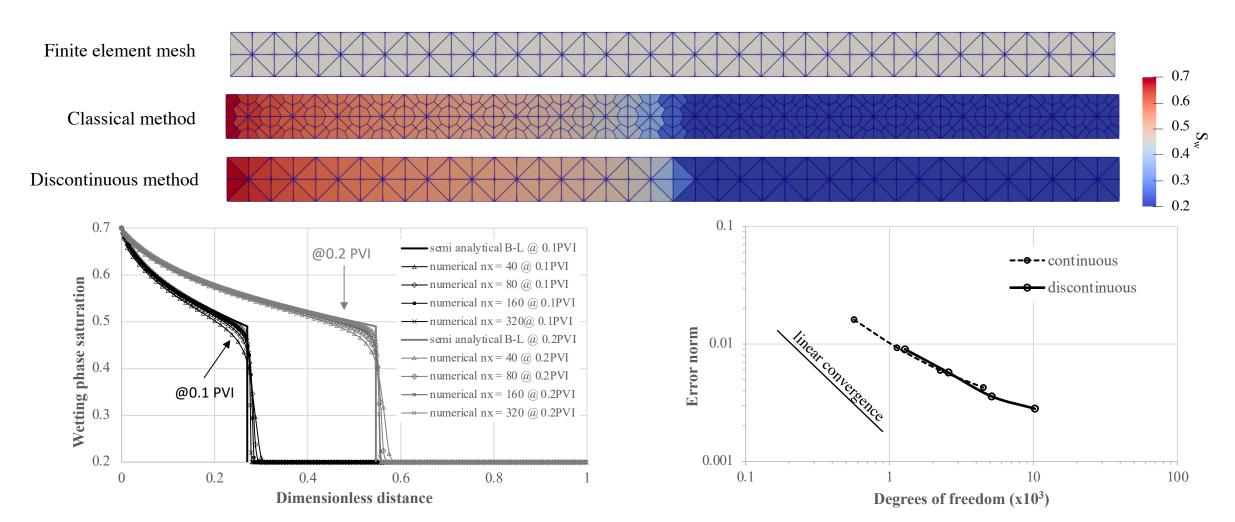
 Discretized continuity equation $C v_{t} = b_{2}$

fluxes
$$\sum_{\Gamma_e \in \Omega} \sum_{j=1}^{N_v} \int_{\Gamma_e} \Psi_i \mathbf{n}. \boldsymbol{\Phi_j} \tilde{\mathbf{v}_{t,j}} d\Gamma_e - \sum_{\Omega_e \in \Omega} \int_{\Omega_e} \Psi_i q_t d\Omega_e = \mathbf{0}$$
 permeability-weighted harmonic average velocity

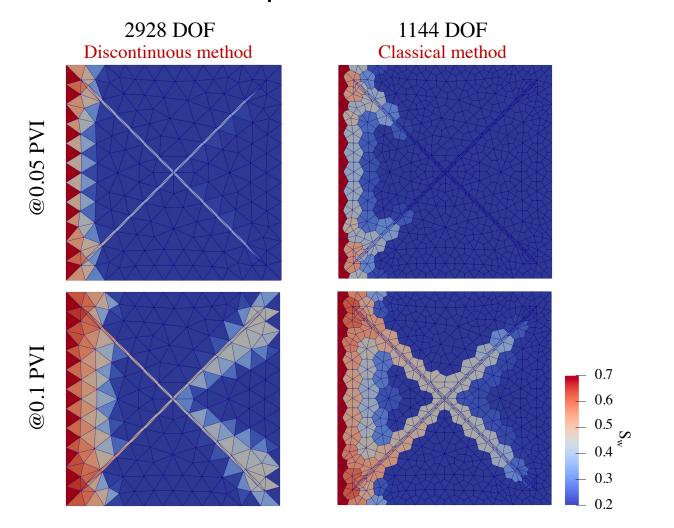
IMPES-based scheme to solve for flow and transport

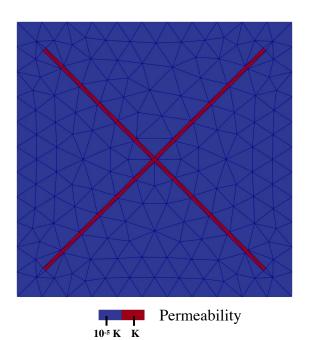


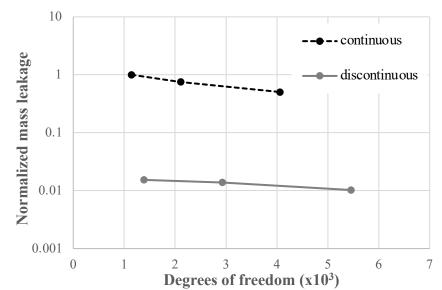
Buckley-Leverett validation



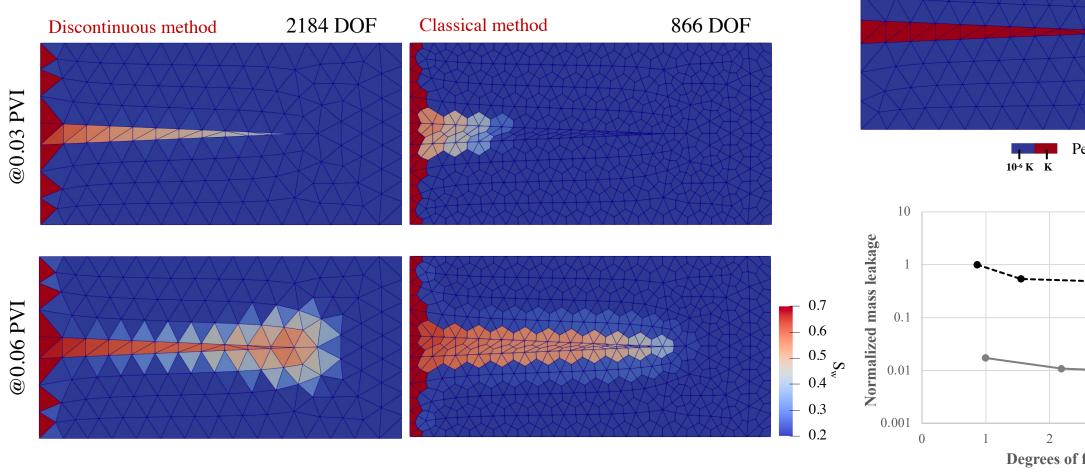
Numerical example 1: cross fracture

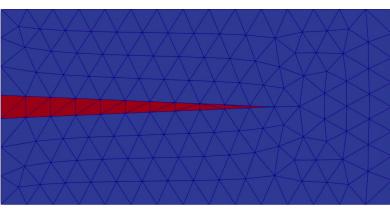


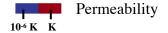


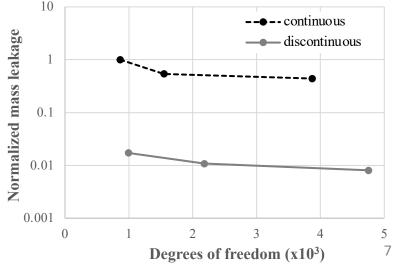


Numerical example 2: wedge pinch out









Conclusions

The proposed method

- Significantly outperforms the accuracy of classical CVFE method to preserve sharp saturation interfaces
- Consistent, stable, and numerically convergent
- Locally and globally mass conservative
- Requires less degrees of freedom than other discontinuous methods and yields similar results

Thank you!