Impact of irrigation scheduling on yield and water productivity of soybeans in a sub-humid environment: A modelling approach

Angela G. Morales¹, Reinhard Nolz¹ and Margarita García-Vila²

¹ Institute for Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences, Vienna, Austria.

² Departamento de Agronomía, Universidad de Córdoba, Córdoba, Spain. (a.moralessantos@boku.ac.at)

Introduction

Objectives:

- ☐ To evaluate irrigation management strategies traditionally used by farmers in Austria.
- ☐ To propose irrigation scheduling scenarios that increase water productivity.

Methods

Fig. 1a. Drip irrigation (DI)

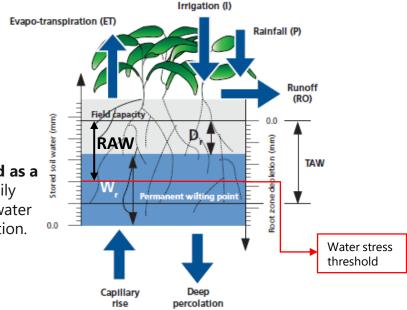
Fig. 1b. Irrigation boom (BI)

Fig. 1c. No irrigation (NI)

Fig. 1d. Sprinkler irrigation (SI)

Field and lab measurements

- Climate
- Crop development
- Soil physical characteristics
- Irrigation dates and amounts


FAO model AquaCrop

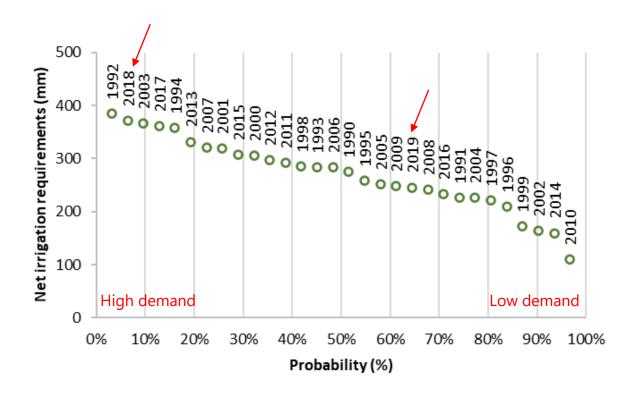
- Parameterization (2019)
- Validation (2018)
- Net irrigation requirements (NIR)
- Development of irrigation scenarios

Assessment of irrigation scenarios

- Irrigation water used (IWU)
- Relative yield reduction (RYR)
- Water productivity (WP)

(DP)

Fig 2. Root zone depicted as a reservoir. RAW is the readily available water, Wr is the water depth, Dr root zone depletion.


Source: modified from FAO Irrigation and Drainage paper No. 66 (P. Steduto et al., 2012)

23/05/2022 4

(CR)

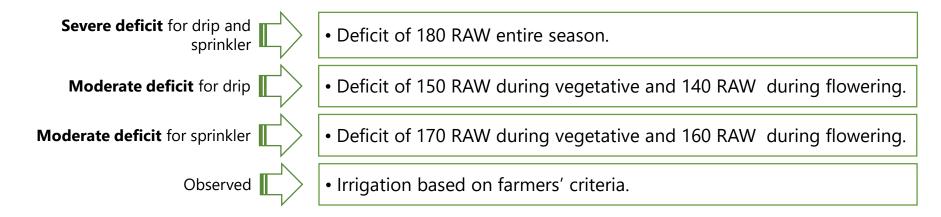
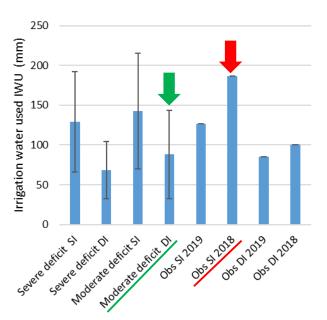
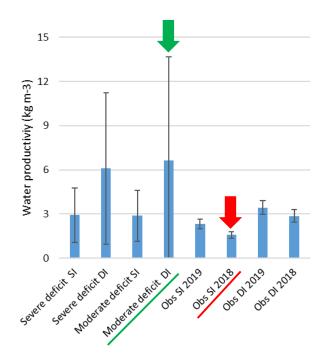
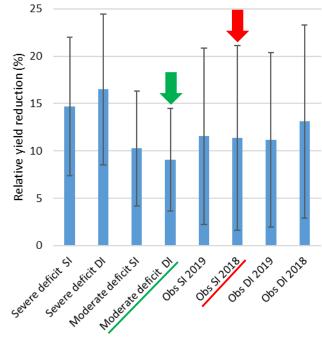

Results

Fig. 3. Probability of exceedance of Net irrigation requirements for the 1990 – 2019 series.

23/05/2022


Fig. 4. Irrigation scenarios.




Scenario in 2018	Plot	Irrigation water used IWU (mm)	Yield (kg ha ⁻¹)	Relative yield reduction RYR (%)	Irrigation Water productivity (kg m ⁻³)
Observed	DRIP	100	3331	31	3.33
Severe deficit	DRIP	67	3238	34	4.86
Moderate deficit	DRIP	133	3758	19	2.82
Observed	SPRINKLER	187	3434	28	1.84
Severe deficit	SPRINKLER	150	3430	28	2.29
Moderate deficit	SPRINKLER	200	3792	18	1.90
Observed	BOOM	152	3541	25	2.33
Observed	NO IRRIGATION	0	2757	49	-
Net irrigation requirement	-	370	4374	0	1.18

23/05/2022

Fig. 5. Results of long-term series 1990 – 2019

Conclusions:

- ☐ The adoption of a moderate deficit with drip lines is likely appropriate to apply in the study area, without affecting yields, despite a reduction of water productivity.
- ☐ Proper application of deficit irrigation requires technical support to farmers' decisions regarding irrigation timings.