

ARTEMIS: An operational tool to manage the information provided by Persistent Scatterers Monitoring at a regional scale

Davide Bertolo (1), Michel Stra (1), Patrick Thuegaz (1)

AOSTA VALLEY (VALLE D'AOSTA) LOCATION & FEATURES

SURFACE
3.262 km²
SMALLEST ITALIAN REGION

ONE OF THE
HIGHEST
LANDSLIDE
SUSCEPTIBILITY IN
ITALY AND UE
4.359 MAPPED
LANDSLIDES

DISCONTINUOSLY
MONITORED
LANDSLIDES
10
LANDSLIDES
MONITORED IN NEAR
REAL TIME:

IMPORTANT
COMMUNICATION
AXES TO FRANCE
AND SWITZERLAND
COST OF
CLOSURE:
> 2M €PER DAY
(damage to the Italian
economy calculated
after Mt. Blanc Tunnel
Fire of 1999)

PSInSAR MONITORING APPLICATIONS

	PS MAPPING	PS MONITORING
TYPOLOGY	Product	Service
TIME	Asyncronous	Near-real time
UPDATING	Yearly/monthly	Avg. 12 days
PURPOSE	 Hot-spot maps Ground deformation inventories Susceptiblity maps LAND MANAGEMENT AND PLANNING	 Monitoring Forecast and prevention

ARTEMIS

- •A_{DVANCED}
- Regional
- •TE_{RRAIN}
- M_{OTION}
- NFORMATION
- •S_{YSTEM}

PROCEDURAL STAGES – PHASE 1

Région Autonome allée d'Aos Regione Autonoma

PHASE 1	PHASE 2	PHASE 3	PHASE 4
REMOTE	REMOTE	FIELD	FIELD
ANOMALIES DETECTION	REMOTE VALIDATION	OPERATIVE VALIDATION	LEVEL UPSCALING

1. Automatic « trend breaking » identification. The service provider issues the layer including the accelerating PS, i.e. the so called « ANOMALIES »

TREND VARIATION THRESHOLD

(REGIONAL CUSTOMIZED) $\Delta V > 10 \text{ mm/y}$ Deformation value calculated on the last 150 days

THE ANOMALIES ARE TOO MANY TO BE FIELD INDIVIDUALLY ANALYZED

EXAMPLE JANUARY 2020

INCOMING PRODUCT:
ANOMALIES
AUTOMATICALLY DETECTED
ABOUT 200
(Ascending+Descending orbits)

PROCEDURAL STAGES - PHASE 2

PHASE 1	PHASE 2	PHASE 3	PHASE 4		
REMOTE	REMOTE	FIELD	FIELD		
ANOMALIES DETECTION	REMOTE VALIDATION (anomalies validation)	OPERATIVE VALIDATION	EW CIVIL PROTECTION MONITORING		

STEP 1: Control of potential alterations of the topographic surface (e.g.: by snow or human activity) by comparison with optical satellite images (Sentinel 2 and Planetscope) or ground images (webcams);

STEP 2: Data spatialization for phenomenon confirmation;

STEP 3: Comparison with PSInSAR data acquired from other satellites, if available, e.g.: Cosmoskymed;

STEP 4: Integration with database data:

- Detailed scale geological maps (1:10.000);
- Landslides National Inventory IFFI;
- Regional inventory of slope instabilities (includes also rockfalls and other);
- Study of susceptibility to rockfalls on regional roads.

STEP 5: Verification of the presence of **targets** (From Hazard to Risk);

Automatic processing in GIS environment

ANOMALIES BEFORE AND AFTER VALIDATION/FILTERING

PROCEDURE

PROCEDURAL STAGES - PHASE 3

PHASE 1	PHASE 2	PHASE 3	PHASE 4
REMOTO	REMOTO	FIELD	FIELD
ANOMALIES DETECTION	REMOTE VALIDATION	OPERATIVE VALIDATION	EW CIVIL PROTECTION MONITORING

PHASE 3 is activated at the end of the automatic procedure, which provides THREE LEVELS OF PRIORITY OF ACTION, BASED ON RISK: LOW, MEDIUM, HIGH. Depending on the level of risk some actions are taken

LOW RISK: COMPARATIVE EVALUATION WITH FURTHER ANOMALY LAYERS

MEDIUM RISK OR HIGH RISK

FIRST : RISK MEDIUM \rightarrow WITHIN 15 days since the output. HIGH RISK \rightarrow within 7 days.

- PRE-OPERATIONAL DATA INTEGRATION;
- FIELD INVESTIGATIONS (Deformation signs in the terrain or infrastructures, cracks, etc.);
- POSSIBLE DRONE/HELICOPTER SURVEYS;
- POSSIBLE RUNOUT AND EVENT SCENARIOS MODELLING.

POSSIBLE INCLUSION IN THE LEVEL 2 NETWORK:

- Discontinuous instrumental on-site follow up (e.g.: GNSS, RTS, Inclinometers, strain gauges);
- If the targets are infrastructures owned and exploited by other bodies and/or companies: REPORT TO THE OWNER (Regional DOT, Hydropower companies, Motorways, Railway Companies, etc.);
- Possible upgrade to the 3rd level network should the follow-up higlights the need.

HIGH PRIORITY-LEVEL 3 NETWORK INCLUSION

- CONTINUOUS EW monitoring
- GEOLOGICAL AND DETAIL RUNOUT MODELLING
- CIVIL PROTECTION PLAN

ISSIME

BIONAZ

SAINT-DENIS

SAINT-MARCEL

AYMAVILLES

GRESSONEY-SAINT-JEAN

LA SALLE

GRESSONEY-SAINT-JEAN

ASCE RILEVAZIONE ISSIME - 12/02/2021

ASCE RILEVAZIONE BIONAZ - 12/02/2021

ASCE RILEVAZIONE SAINT-DENIS - 12/02/2021

ASCE RILEVAZIONE SAINT-MARCEL - 12/02/2021

ASCE RILEVAZIONE AYMAVILLES - 12/02/2021

ASCE RILEVAZIONE GRESSONEY-SAINT-JEAN - 12/02/2021

ASCE RILEVAZIONE LA SALLE - 12/02/2021

ASCE RILEVAZIONE GRESSONEY-SAINT-JEAN - 12/02/2021

LOGOUT

12

0

0

33

21

21

-Anno ∨

Applica

EACH ANOMALY IS REPORTED IN A MONOGRAPHIC WEB-BASED REPORT TO KEEP RECORD OF WHAT TYPE OF ACTION HAS BEEN TAKEN

Note:

CODE	p_spazio	p_geo	p_geo2	p_geo3	p_geo4	p_IFFI	p_DGPV	p_CATDISS	p_DISS_p	p_ROSI	p_STRADE	p_EDIFICI	p_GAS	p_ELETTRIC	p_FUNIVIE	p_SEGGIOVI
EEL1LXD	0	0	2	1	0	0	0	0	0	1	2	3	0	1	0	0

FIELD INVESTIGATION ADDS TO THE REPORT THE FIELD DATA TO SUPPORT FURTHER ACTIONS

Dati sopralluogo	
Rilevatore	
- Nessuno -	~
Data sopralluogo	
05/03/2021	
Formato: 05/03/2021	
Ricorrente *	
No	~
Tipologia di elementi a rischio	
Puntuale	
Lineare	
Areale	
Elemento a rischio	
Distanza elemento a rischio (m)	
Deformazioni elementi antropici	
Strade	
Muri	
Recinzioni	

Technical Note

Région Autonome
Vallée d'Aoste
Regione Autonoma
Valle d'Aosta

Integration of Satellite Interferometric Data in Civil Protection Strategies for Landslide Studies at a Regional Scale

Silvia Bianchini 1,4, Lorenzo Solari 2, Davide Bertolo 3, Patrick Thuegaz 3 and Filippo Catani 4

Level 1		Level 2	Level 3
Regional		Local	Local
Near-real time + Deferred time		Near-real time	Real Time
Remote sensing		Remote sensing + on site discontinuous	on site continuous
12 days + twice/year		12 days + periodic update	continuous
• PSI («PS mapping» + «PS mon	nitoring»)	 PSI anomalies («PS monitoring») GNSS discontinuous GBInSAR discontinuos Inclinometers RTS 	 GNSS continuous GBInSAR continuous GPS DMS RTS
Preliminary screening deformations and account of existing phenomental place. Environmental place.	celeration nena)	 Investigation of potentially critical situations Validation of data from Level Potential upgrade to level 3 	Alert and monitoringCivil Protection
		•	
Phase 1: Identification of PSI clusters On-site	Remote check + control ation	Definition of further monitoring and/or remediation activities	Specific hazardous sites under continuous early warning moni- toring

A SHORT SYNTHESIS

WE ARE IMPLEMENTING A LANDSLIDE- HAZARD SCREENING TOOL;

AS ANY SCREENING TOOL (SEE MEDICINE), IT IS:

- ➤LOW COST;
- >PRODUCES FALSE POSITIVES => FILTERING PROCEDURE
- > SOME SLOPES ARE NOT COVERED = ▶ TRADITIONAL MONITORING/BETTER ALLOCATION OF RESOURCES
- >PHENOMENA WITH EVOLUTION FASTER THAN 800mm/Y =▶NOT BEING MONITORED

AN ACCURATE INTERPRETATIONE NEEDS:

- >SITE/REGION KNOWLEDGE OF SITE/REGIONAL GEOLOGY AND (IN SOME CASES) GROUND CALIBRATION
- > A PLATFORM OR A SISTEM TO GATHER ALL THE DATA (OPTICAL SATELLITE, INVENTORIES, SUBSURFACE, IN ORDER TO SPEED THE EVALUATIONS BEFORE ACTIVATING THE FIELD SURVEYS WHICH COULD PROVE TO BE USELESS;

THANK YOU! email: d.bertolo@regione.vda.it URL: www.geologiavda.partout.it EGU General 2022 Vallée d'Aoste Valle d'Aosta