Large wood (LW) and sediment (dis-)connectivity in river systems

Introducing LW (dis-)connectivity and sediment retention potential indices and their application in river management contexts

AUTHORS: R. POEPPL, H. FERGG, J. PEREZ

Introduction

In-stream large wood (LW) can have significant effects on channel hydraulics and thus water and sediment connectivity (incl. sediment storage) (e.g. Keller and Swanson, 1979; Gregory et al., 1985; Wallerstein and Thorne, 1997; Pfeiffer and Wohl, 2018)

Relationship between in-stream LW structures and their hydraulic function is generally quantified through drag force (cf. Abbe and Montgomery, 1996)

Drag analyses, however, are **data-demanding**, time-consuming and often not straightforward (and therefore **not practicable**, esp. in river management contexts)

Here, we introduce a **simple LW dis-connectivity as well as a LW sediment retention potential index** calculated based on visually estimated field-derived LW parameters

LW disconnectivity index (ID_{LW})

$$ID_{LW} = \frac{\sum A_{LW}}{River\ length\ (m)}$$

A_{LW} = degree of in-stream LW channel blockage (in % of the channel cross-sectional area filled by the LW accumulation, perpendicular to the flow direction) – visually estimated in the field (cf. Dixon et al., 2016)

LW sediment retention potential index (IR_{LW})

$$IR_{LW} = \frac{\sum RP_{LW(f)^*}}{River\ length\ (m)}$$

 RP_{LW} = sediment retention potential of LW (no (0), low (1), moderate (2), high (3), based on LW acc. type** and A_{LW})

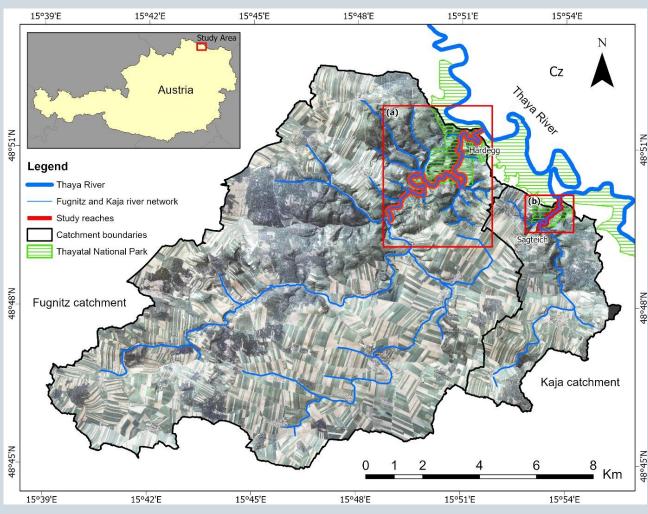
^{*} For the calculation of fine (f) sediment retention potential of LW (RP_{LW(f)}), only LW accumulations exhibiting significant backwater effects are taken into account

LW sediment retention potential index (IR_{LW})

LW acc. type**	RP _{LW} class (0-3)			
Single pieces				
Bridge	0 (no bed contact)			
Collapsed bridge	1 (A _{LW} < 50%), 2 (A _{LW} > 50%)			
Ramp	1 (A _{LW} < 50%), 2 (A _{LW} > 50%)			
Log step	2 (A _{LW} < 50%), 3 (A _{LW} > 50%)			
Partial log step	1 (A _{LW} < 50%), 2 (A _{LW} > 50%)			
Debris jams				
Underflow jam	0 (no bed contact)			
Dam jam	2 (A _{LW} < 50%), 3 (A _{LW} > 50%)			
Partial dam jam	1 (A _{LW} < 50%), 2 (A _{LW} > 50%)			
Other jams	0 (no bed contact), 1 (A _{LW} < 50%), 2 (A _{LW} > 50%)			

Log step

Dam jam


Collapsed bridge

Partial dam jam

Application of the indices

Poeppl et al., in prep.

Lower (forested) reaches of two medium sized mixed-load perennial streams in the Thayatal National Park, Austria:

Fugnitz:

-) Third-order stream

-) Catchment size: 138.4 km²

-) Total length: 29.7 km

Kaja:

-) Second-order stream

-) Catchment size: 21.3 km²

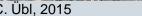
-) Total length: 10.5 km

Bohemian Massif (Crystalline mid-mountain range) 500-600 mm mean ann. precipitation

~8°C mean ann. temperature

Application of the indices

Field survey of in-stream LW in spring 2021:

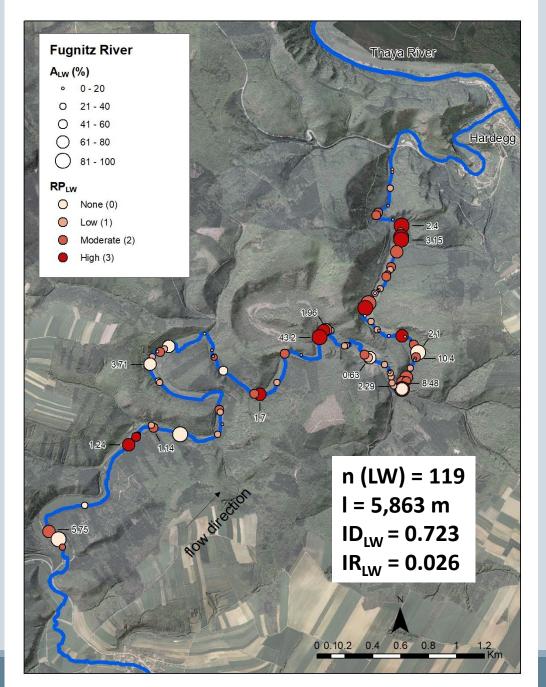

- -) LW classification (span, position, orientation, type)
- -) Visual estimation of A_{IW} cf. Dixon et al., 2016
- -) Backwater effects
- -) Sediment storage (volume) cf. Welling et al., 2021

C. Übl, 2006

Management contexts:

- -) Flood/water and sediment retention
- -) Habitat quality/diversity

C. Übl, 2015

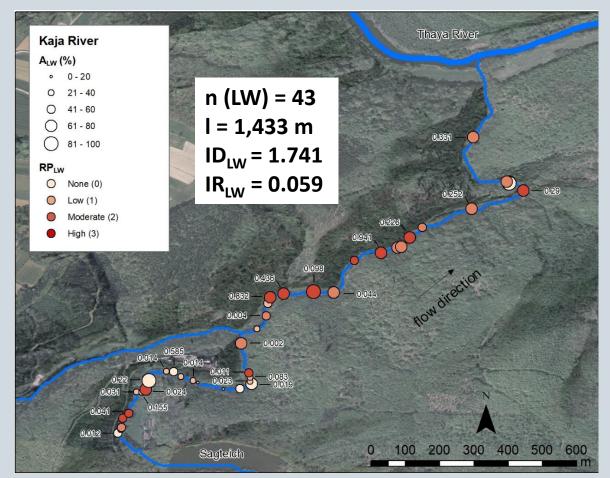

Poeppl et al., in prep.

Results

FUGNITZ RIVER				
LW type	Quantity	Avg. A _{LW} (%)	Avg. RP _{LW} (0-3)	Avg. sediment storage (m³)
Single pieces				
Bridge	7	13.5	0	0
Collapsed bridge	3	33.33	1.33	0
Ramp	11	21.36	1	0
Partial log step	10	17.5	1	0
Log step	2	2	2	0
Debris jams				
Underflow jam	11	63.18	0	0
Dam jam	12	79	2.92	4.307
Partial dam jam	23	47.83	1.57	1.305
Other jams	30	28.62	1.17	0

Poeppl et al., in prep.

Total sediment storage = 88.7 m³ (= 15.13 m³/km)



Results

KAJA RIVER				
LW type	Quantity	Avg. A _{LW} (%)	Avg. RP _{LW} (0-3)	Avg. sediment storage (m³)
Single pieces				
Bridge	1	85	0	0
Collapsed bridge	2	30	1	0
Ramp	5	22	1	0.017
Partial log step	-	-		-
Log step	-	-		-
Debris jams				
Underflow jam	7	76	0	0
Dam jam	11	70.45	3	0.263
Partial dam jam	10	58.82	1.82	0.011
Other jams	7	53.57	1.42	0.109

Poeppl et al., in prep.

Total sediment storage = 4.7 m³ (= 3.28 m³/km)

Poeppl et al., in prep.

Conclusion (short)

The newly developed indices have shown to provide a straightforward and valuable tool to assess the effects of LW on water and sediment (dis-)connectivity, especially in a river management context where often simple assessment approaches are needed to get a system-wide overview on location, type and potential effects of LW accumulations.

Contact: ronald.poeppl@univie.ac.at (E-Mail); https://hi-conn.univie.ac.at/en/ (WG website)

C. Übl. 2015

References

Abbe, T. B., & Montgomery, D. R. (1996). Large woody debris jams, channel hydraulics and habitat formation in large rivers. Regulated Rivers: research & management, 12(2-3), 201-221.

Gregory, K. J., Gurnell, A. M., & Hill, C. T. (1985). The permanence of debris dams related to river channel processes. Hydrological Sciences Journal, 30(3), 371-381.

Keller, E. A., & Swanson, F. J. (1979). Effects of large organic material on channel form and fluvial processes. Earth surface processes, 4(4), 361-380.

Pfeiffer, A., & Wohl, E. (2018). Where does wood most effectively enhance storage? Network-scale distribution of sediment and organic matter stored by instream wood. Geophysical Research Letters, 45(1), 194-200.

Dixon, S. J. (2016). A dimensionless statistical analysis of logiam form and process. Ecohydrology, 9(6), 1117-1129.

Wallerstein, N., & Thorne, C. R. (1997). Impacts of woody debris on fluvial processes and channel morphology in stable and unstable streams. Nottingham univ (UK), Dept. of Geography.

Welling, R. T., Wilcox, A. C., & Dixon, J. L. (2021). Large wood and sediment storage in a mixed bedrock-alluvial stream, western Montana, USA. Geomorphology, 384, 107703