

Introduction and Methodology

Objectives

- To compare the skill of S2S ECMWF forecasts and S2S ML-based forecasts [1] in producing extreme indices.
- To correlate FCMWF-derived extreme indices with the impact of extreme events to evaluate the relevance of these extreme indices.

Methodology: skill assessment

For each dataset - CPC, ECMWF and ML-based forecasts, the following steps were performed:

Data preparation.

Daily quantile maps.

Index calculation, redefined over the S2S horizon.

Evaluation metrics -PCC and MAE of indices derived using forecasts and ground truth data.

Flood

Wave action

Glacial lake outburst

Wildfire

movement

Earthquake

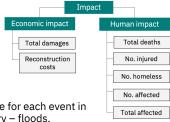
Storm

Drought Extreme **Epidemic**

Mass

temperature

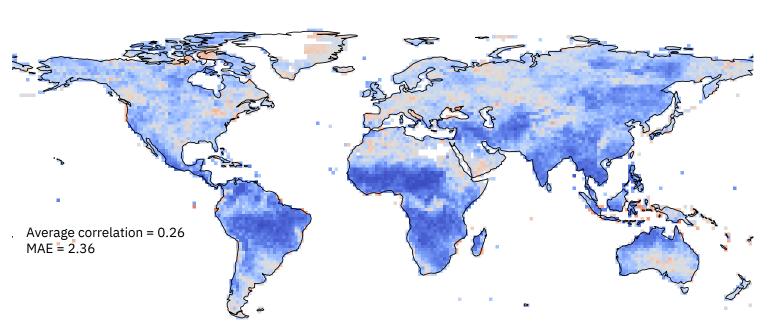
Volcanic activity


Fog

ETCCDI indices

A set of temperature- and precipitation-based extreme indices. Examples are:

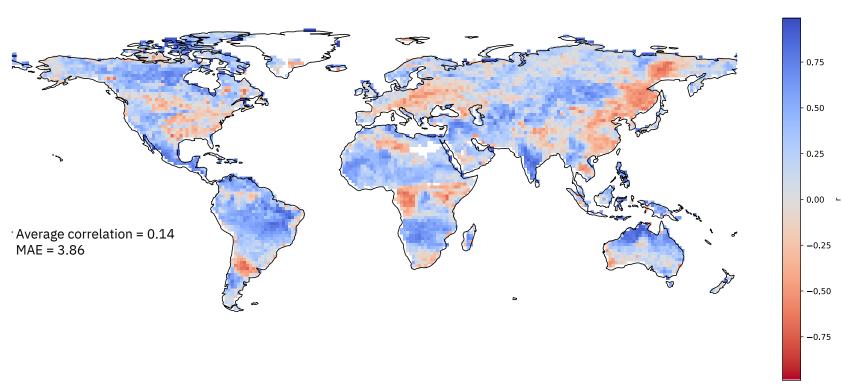
- CDD consecutive dry days maximum annual number of consecutive dry days.
- WSDI warm spell duration indicator annual number of days with at least 6 consecutive days when $T_{max} > 90^{th}$ percentile.
- Rx5day max 5-day precipitation maximum 5-day precipitation total.


Methodology: impact analysis

- Develop an impact score for each event in each respective category - floods, droughts and heat waves - using data from EM-DAT [2].
- Correlate each event with the relevant extreme index.

Skill Assessment

CDD - PCC: ECMWF vs. CPC


-0.50

-0.75

- 0.75

Skill Assessment

CDD - PCC: ML-Based Forecasts vs. CPC

Impact Analysis

Table 1: PCC: Economic Impact vs. ECMWF-derived Extreme Indices

rable 211 co. Leaning Impact to. Let 1111 delited Extreme Indices			
	Floods	Droughts	Heat waves
CDD	-0.21	0.60	-
CWD	0.21	-0.53	-
Rnnmm	0.16	-0.21	-
SDII	0.18	-0.39	-
Rx5day	0.35	-0.34	-
Rx1day	0.23	-0.17	-
R95p	0.061	-0.28	-
R90p	0.12	-0.31	-
R85p	0.15	-0.35	-
R70p	0.18	-0.44	-
TR	-	-	0.075
TX90p	-	-	0.31
WSDI	-	-	0.32
TXx	-	-	-0.12
TXn	-	-	0.28

Conclusion

- 1) In most regions of the globe, the ECMWF forecasts produce relatively accurate extreme indices.
- 2) The indices defined over the S2S horizon show significant relevance to the economic impact of extreme events.
- 3) Rx5day, CDD and WSDI are found to be the best indicators of the impact of floods, droughts and heat waves, respectively.

References

[1] Zaytar, M. A., Zadrozny, B., Watson, C., Salles Civitarese, D., Eben Vos, E., Michael Mathonsi, T., and Lukhetho Mashinini, T.: ML-based Probabilistic Prediction of 2m Temperature and Total Precipitation, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11063, https://doi.org/10.5194/egusphere-egu22-11063, 2022.

[2] D. Guha-Sapir, R. Below, Ph. Hoyois - EM-DAT: The CRED/OFDA International Disaster Database – <u>www.emdat.be</u> – Université Catholique de Louvain – Brussels – Belgium.