Exploring the potential of Muon Scattering Radiography (MSR) to estimate the snow water equivalent

Aitor Orio Alonso^{1 3} Esteban Alonso González² Pablo Martínez Ruiz del Árbol³ Carlos Díez González¹ Pablo Gómez García¹

¹Muon Tomography Systems S.L - Bilbao, Spain

²Centre d'Etudes Spatiales de la Biosphère (CESBIO) - Université de Toulouse, CNRS/CNES/IRD/INRA/UPS - Toulouse, France

³Instituto de Física de Cantabria (IFCA) - Universidad de Cantabria - Santander, Spain

E-mail: aitor.orio@muon.systems

EGU general assembly May 25, 2022

Intoduction

A new technique for SWE monitoring

Snow Cover area (2000-2021, ERA5Land)

- The seasonal snowpack influences ecological and hydrological processes
- 2 But its monitoring, is still a scientific challenge
- Muon Scattering Radiography (MSR) is a non-destructive technique able to extract information about the internal properties of materials
- 4 Complementary method to improve the SWE monitoring networks

Intoduction

A new technique for SWE monitoring: Fundamentals

- **1** Cosmic rays interact with the atmosphere creating muons, among other particles
- 2 Muons arrive with an approximately constant **flux** to the earth surface $(10.000 \mu/m^2 min)$
- 3 We measure their **scattering angle** (θ) which is related to the properties of traversed material

Muon Scattering angle $(\theta_0 = RMS(\theta_{plane}))$

$$\theta_0 = \frac{13.6}{\beta cp} \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln(\frac{x}{X_0 \beta^2}) \right]$$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

Simulation

Computing snowpack measurement simulations: SNOWPACK model

Simulation

Computing snowpack measurement simulations: CRY and GEANT4

Simulation steps

- Cosmic muon flux using CRY
- GEANT4 snowpack as layers of variable height and content of water, ice and air determined by SNOW-PACK
- Interaction of muons with the snowpack
- Detectors and their response

2 years of data taking simulated
 1 m² snow surface
 0.80 m² detectors with 3 m of separation

Experimental setup

Laboratory measurements

Detector and laboratory samples

- Multi-Wire proportional chambers (MWPC)
- 4 chambers (2D grids of 4 mm separated wires)
- Crushed ice samples emulating snow (0.08 m²)

Results

Correlation and modelling (Simulation: 1st year, 5 hour weekly measurements)

Projections

Simulation: SWE estimation and continuous monitoring (2nd year, 5 hour measurements)

Projections

Real data: SWE estimation (preliminary results)

Conclusions

SWE detection, limitations and future work

We measured and modelled the **SWE evolution** of real (crushed ice) and simulated snow samples using **Muon Scattering Radiography (MSR)**

A very detailed understanding of **the detector material and resolution** influence in the measurements. Response is needed in order to estimate **systematic uncertainties** (work ongoing).

Real data preliminary study only covering SWE **between 0 and 200mm**. Is desirable to test the technique in field, increasing the analysed **snow surface** and the **data taking time**, in order to improve the **accuracy**, among other factors.

Muon Scattering Radiography (MSR) can be used to **monitor the SWE** and could potentially extract information about the **inner structure** of the snowpack

Aitor Orio Alonso (Muon Systems

Thank you

I look forward to receiving any questions or comments

24 23 22 21 20 19 18 17 16 15 12 11 10 9 8 7 6 6 4 3

M STAINLESS STEEL

E-mail: aitor.orio@muon.systems

Backup

Fundamentals and simulation

Muon Scattering angle $(\theta_0 = RMS(\theta_{plane}))$

$$\theta_0 = rac{13.6}{eta cp} \sqrt{rac{x}{X_0}} \left[1 + 0.038 \ln(rac{x}{X_0eta^2})
ight]$$

 βc : Muon velocity

p: Muon momentum

x: Path lenght of the muon in traversed material

Xo: Radiation length of traversed material. It is related to the energy loss of high-energy electrons in the material

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.

CRY

Software which generates cosmic-ray particle showers for use as input to transport and detector simulation codes.

C. Hagmann, et al., "Cosmic-ray Shower Library (CRY)," 2012.

GEANT4

Toolkit for simulating the passage of particles through matter. Its functionalities include tracking, geometry, physics models and hits.

S. Agostinelli et al., "GEANT4 - A simulation toolkit," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 506, no. 3, pp. 250-303, Jul. 2003.

Aitor Orio Alonso (Muon Systems)

Backup

Laboratory measurements

High density artificial snow samples. Their density and SWE match with the SNOWPACK simulation final season (melting) snowpack.

SWE (mm)	m (Kg)	d (Kg/m³)	h (mm)
0	0	0	0
99.84	10.60	448.70	222.50
197.97	21.20	494.92	400

Table: Measured crushed ice laboratory samples

