

Climate analogs as input for ice sheet models during the glacial

TOBIAS ZOLLES^{1,2}, ANDREAS BORN^{1,2}

- ¹ Department of Earth Sciences, University of Bergen
- ² Bjerknes Centre of Climate Research

Proxy analog method

- Create a transient climate forcing
- Based on the agreement between proxy/instrumental data and model simulations
- Dynamically expandable with new climate model simulations
- Other variables than the proxy records available
- Physical consistency between the variables not broken

Pseudo-proxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era

Juan José Gómez-Navarro^{1,2,3}, Eduardo Zorita⁴, Christoph C. Raible^{1,2}, and Raphael Neukom^{2,5}

A spatiotemporal reconstruction of sea-surface temperatures in the North Atlantic during Dansgaard–Oeschger events 5–8

Mari F. Jensen¹, Aleksi Nummelin^{2,3}, Søren B. Nielsen⁴, Henrik Sadatzki¹, Evangeline Sessford¹, Bjørg Risebrobakken⁵, Carin Andersson⁵, Antje Voelker⁶, William H. G. Roberts⁷, Joel Pedro⁸, and Andreas Born^{1,9,10}

Proxy surrogate reconstructions for Europe and the estimation of their uncertainties

Oliver Bothe and Eduardo Zorita

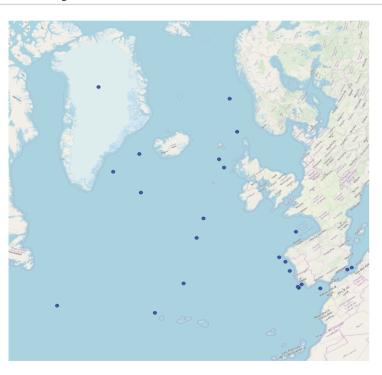
Tropical Pacific – mid-latitude teleconnections in medieval times

Nicholas E. Graham • Malcolm K. Hughes • Caspar M. Ammann • Kim M. Cobb • Martin P. Hoerling • Douglas J. Kennett • James P. Kennett • Bert Rein • Lowell Stott • Peter E. Wigand • Taiyi Xu

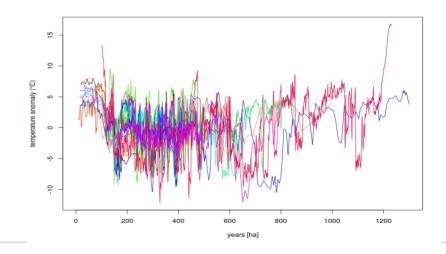
¹Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland

²Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

³Department of Physics, University of Murcia, Murcia, Spain


⁴Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany

⁵Institute of Geography, University of Bern, Bern, Switzerland



Proxy location and record

- 24 proxies (+gisp2) SST and T2m
- Ranging from ~1 -125 ka
- 100 year resolution through interpolation

Current state of the art climate models/simulations

- CMIP6: historical+scenarios 126/245/370/585 2-400 yr/model (daily), 3 models with LGM simulations
- CCSM4-LGM 30 yr (daily) CMIP5
- ERA-interim 39 yr (daily)
- COSMOS 3x glacial+PI ~6k yr (monthly)
- NorESM 115, 120, 125, 127

Total ~11k potential analogs

Calculating comparable anomalies and analog method

24 proxies P_i with i (1300) time steps

$$RMSE_i = \sqrt{\sum_j (P_j^i - M_j)^2} \ \forall i \in [t1, t2]$$

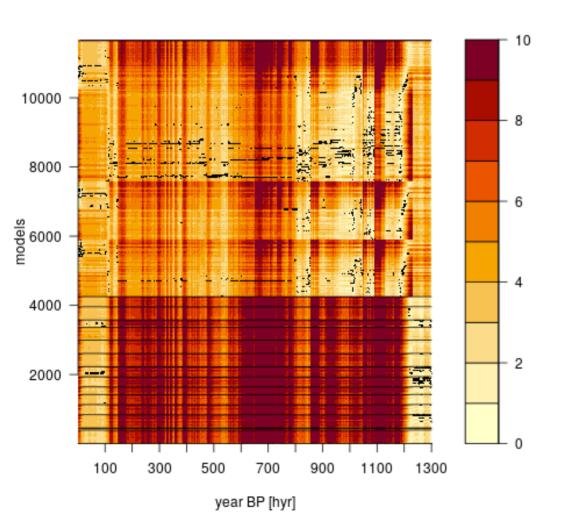
This can also be calculated within the anomaly space:

$$RMSE_ik = \sqrt{\sum_j (P^i_j - \overline{P}_j - M^{ik}_j - \overline{M}_j)^2} - > min$$

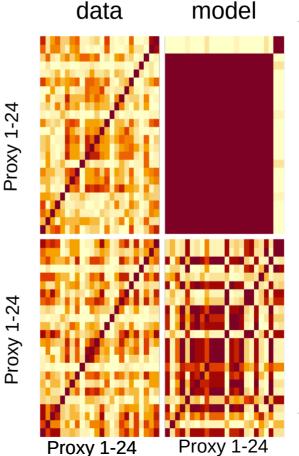
Anomalies may be fitting due to large model biases -> linear bias correction

$$RMSE_{ik} = \sqrt{\sum_{j} (P_j^{i\prime} - [M_j^{ik} - \overline{P}_j + p_{0j} - M_{0j}])^2}$$
 with $P_j^{i\prime} = P_j^i - \overline{P}_j$.

- 1) Standard deviation normalization?
 - 2) spatial coverage 3) Ice vs marine



- Analog performance decreases during the glacial
 - Much worse for certain time slices
 - Not sufficiently large model pool?
- CMIP 6 projections for the next century are relative good analogs for the Eamian (and vice versa)
- Absolute values cannot be easily compared (as the amount of proxies varies)
- Warm bias in interior of Greenland



Correlations in the proxy vs the model data

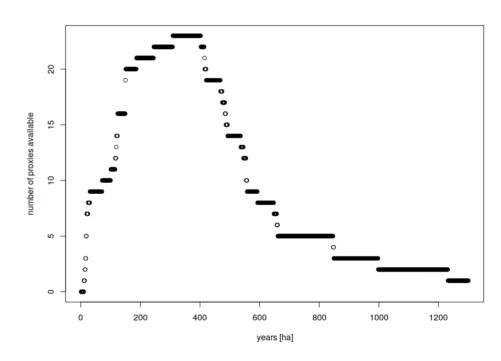
- Different temperature correlations between the proxies and the proxy locations in the model
- Ice cores strongly correlated
- Model due to limited time span higher correlations, and clear patterns visible

full

Pairwise complete correlation

Entire model pool

COSMOS model



Problem missing data – EOF as solution?

- Covariance matrix cannot be calculated in the normal sense, alternative calculations, that can be used in an ensemble set up:
 - Pairwise complete over entire period
 - Observational complete ~350ha-400ha
 - Stepwise pairwise complete

A: 1-100, B: 21-80 and C 11:65

$$\overline{COV} = \begin{bmatrix} A \cdot A/100 & A \cdot B/60 & A \cdot C/55 \\ A \cdot B/60 & B \cdot B/60 & B \cdot C/45 \\ A \cdot C/65 & B \cdot C/45 & C \cdot C/55 \end{bmatrix}$$

Note: COV matrix is not necessary PSD, negative eigenvalues need to be checked

Summary

- Reconstructing the climate of the last glacial cycle based on proxies over the atlantic is doable
 - Multiple degrees of freedom exist:
 - Correlations of the proxy data
 - Differences in the time span of proxy data
 - Spatial oversampling
 - Differences in temporal standard deviation
 - Bias correction of model pool
- Current model pool not sufficiently large
- GCMs may not cover the entire variability of coastal proxies even on centennial time scales

EOFs as solution

- Advantages
 - Spatial correlations accounted for
 - High frequency noise removed
- Disadvantages
 - Missing value treatment difficult
 - Temporal in-homogeneity

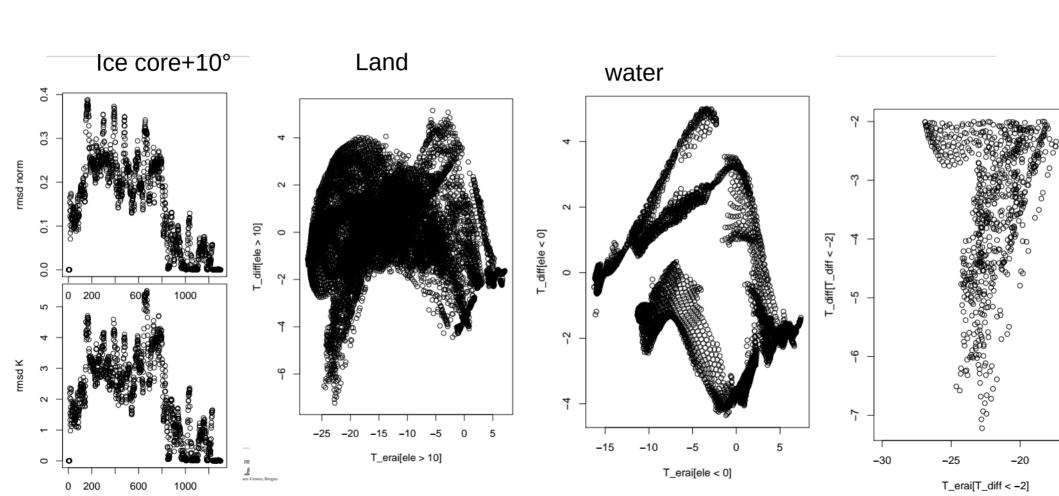
$$X = \begin{bmatrix} P_1^1 & P_1^2 & \dots & P_1^n \\ P_2^1 & \dots & \dots & P_2^n \\ \dots & \dots & \dots & \dots \\ P_m^1 & P_m^2 & \dots & P_m^n \end{bmatrix}$$

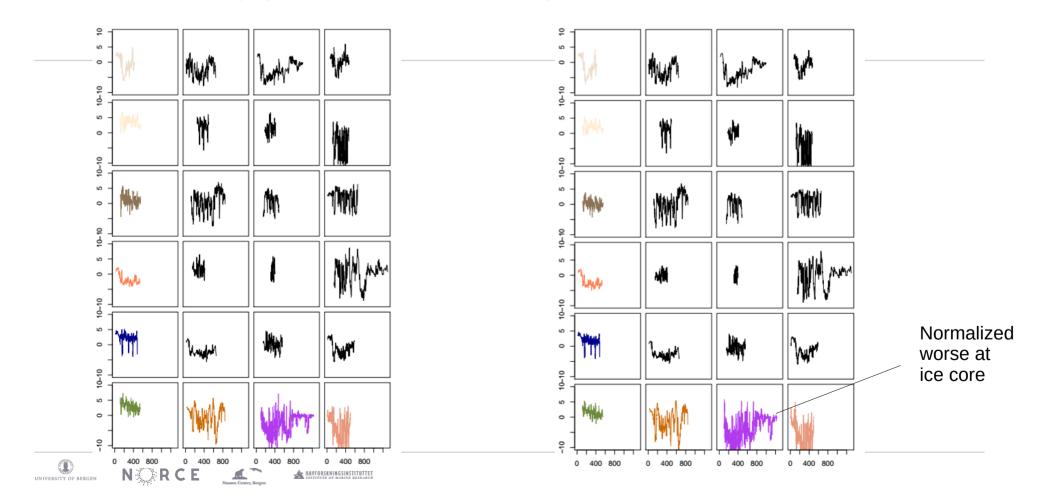
$$X' = \begin{bmatrix} P_1^{1\prime} & P_1^{2\prime} & \dots & P_1^{n\prime} \\ P_2^{1\prime} & \dots & \dots & P_2^{n\prime} \\ \dots & \dots & \dots & \dots \\ P_m^{1\prime} & P_m^{2\prime} & \dots & P_m^{n\prime} \end{bmatrix} = \begin{bmatrix} P_1^1 - \overline{P}_1 & P_1^2 - \overline{P}_1 & \dots & P_1^n - \overline{P}_1 \\ P_2^1 - \overline{P}_2 & \dots & \dots & P_2^n - \overline{P}_2 \\ \dots & \dots & \dots & \dots \\ P_m^1 - \overline{P}_m & P_m^2 - \overline{P}_m & \dots & P_m^n - \overline{P}_m \end{bmatrix}$$

$$RMSE_{ik} = |X^{i\prime} - M^{ik} - \overline{X} + X_0 - M_0| = |X^{i\prime} - M^{ik\prime}|$$

$$COV \cdot EOFs = \Lambda EOFs$$

 $RMSE_{ik} = |EOFs^T \cdot X^{i\prime} - EOFs^T \cdot M^{ik} - EOFs^T \cdot \overline{X} + EOFs^T \cdot X_0 - EOFs^T \cdot M_0| = |EOFs^T \cdot X^{i\prime} - EOFs^T \cdot M^{ik\prime}|$




How to bias correct?

Best analog performance at proxy location

