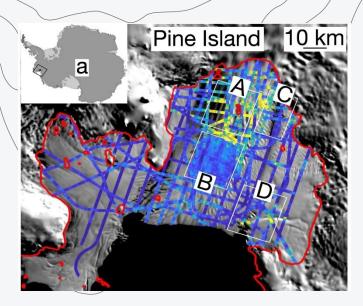


MODELLING THE OCEAN-ICE INTERACTIONS BENEATH ICE SHELVES IN A BROKEN STATE

Dorothée Vallot^{1,2,3}, Nicolas Jourdain², Anna Crawford³, Jan Åström⁴, Doug Benn³, and Pierre Mathiot²

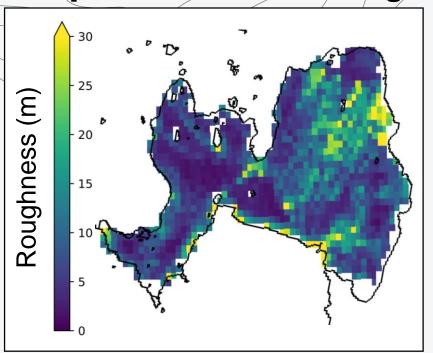
¹Swedish Meteorological Institute (SMHI, Oceanographic unit, Norrköping, Sweden (<u>dorothee.vallot@smhi.se</u>)
²Institut des Géosciences de l'Environnement (UGA-IGE), University of Grenoble Alpes, Grenoble, France
³School of Geography & Sustainable, University of St Andrews, St Andrews, UK
⁴CSC- IT Center for Science, Espoo, Finland



Not so smooth under an ice shelf What are the feedbacks on melt and stability?

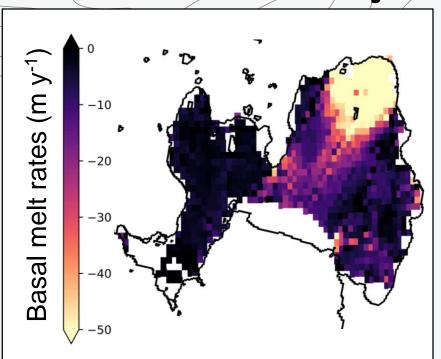
Watkins et al, 2021

- Topography at the base
 - Basal crevasses, melt channels, rifts, ...
 - Roughness as a measure
- Impact on basal melt
 - Excavation of existing basal highs
 - Correlation between basal melt and roughness (Watkins et al, 2021)
- Impact on stability
 - Thins and weakens shelves
- Usually not included in models



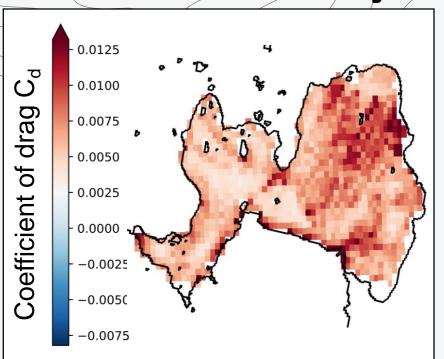
Basin-scale model Spatial variation of roughness in ocean model

- Ocean model NEMO-4.2 at 1/12° (1-2 km)
 - Regional config at the Amundsen Sea
 - Basal melt implemented (Mathiot et al, 2017)
- Spatial change of drag at the ice/ocean interface
 - Roughness from Watkins et al, 2021
 - Drag coefficient C_d as a function of roughness interpolated on the ocean model grid



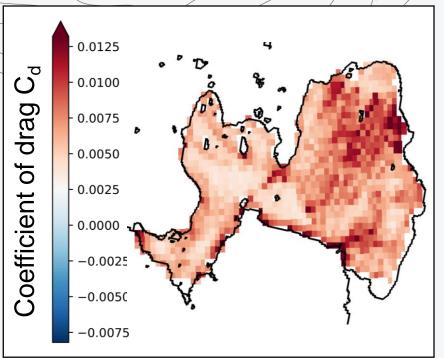
Basin-scale model Basal melt affected by basal drag

Basal melting depends on ocean circulation and heat amount in the boundary layer (BL)



Basin-scale model Basal melt affected by basal drag

- Basal melting depends on ocean circulation and heat amount in the boundary layer (BL)
- Basal drag controls turbulent exchange of heat, changes the shear profile and the thickness of the boundary layer



Basin-scale model Basal melt affected by basal drag

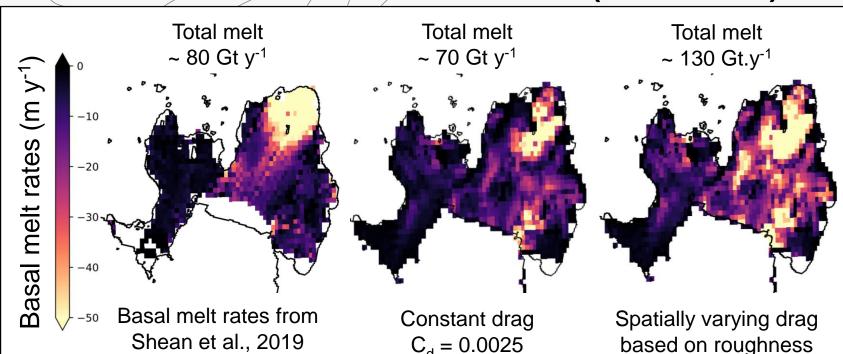
- Basal melting depends on ocean circulation and heat amount in the boundary layer (BL)
- Basal drag controls turbulent exchange of heat, changes the shear profile and the thickness of the boundary layer

$$F_d =
ho \mathcal{C}_d U_m^2 =
ho u^*$$
 U_m^2 riction velocity

 Coefficient of drag as a function of roughness z₀

$$C_d = \left(\frac{K}{\log(Z/Z_0)}\right)^2$$

K = 0.4 von Karman constant z half thickness of 1st ocean level beneath the ice



Basin-scale model Pine Island Ice Shelf basal melt rates (2008 - 2015)

Next steps...

- Basin-scale model
 - More experiments
 - Finer resolution of the ocean model
 - Apply it to other ice shelves
- Crevasse-scale model
 - Examine the balance between ocean melt and deformation of a crevasse
 - 3 high resolution models

