

Exploiting kilometer-scale grid spacing for climate simulations over High Mountain Asia

EGU General Assembly 2022

Emily Collier and Nikolina Ban

Motivation

Conventional climate models have persistent biases over the Tibetan Plateau

Refining the horizontal grid spacing to kilometer-scale in atmospheric models:

- improves terrain and process representation
- allows for explicit resolution of deep convection

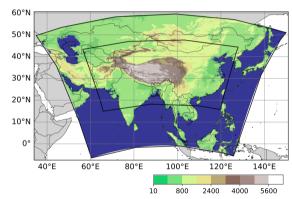
Li et al. (2021)

kmMountains: Mountain Climate at the Kilometre-Scale Resolution

Project goals:

- Perform one of the first kilometer-scale decadal climate change simulations for High Mountain Asia
- Investigate the impact of model resolution on process representation
- Assess how mountain climate will change with further warming

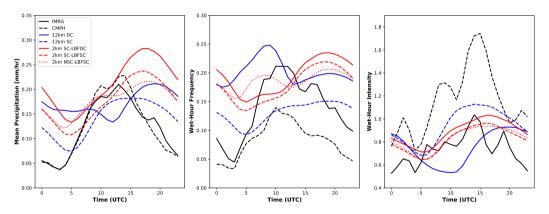
Contributes to the CORDEX Flagship Pilot Study Convection-Permitting Third Pole (CPTP)


Simulations

Model: COSMO (COnsortium for Small-Scale MOdelling) climate model (COSMO-CLM) v.5.0n1

Domains (one-way nested):

- 12-km domain
 - grid dimensions 700x550x60
 - deep convection scheme
- 2.2-km domain
 - grid dimensions 2640x1475x60
 - shallow convection scheme


Forcing: ERA5 (\sim 31 km, 3hrly)

domain extent & model topography [m]

Role of Convection Parameterization

Core Monsoon Season – JJA 2018 – Precipitation diurnal cycle above 2500m

Outlook

Further work to understand differences in simulations

CPTP FPS Milestones:

- Submitted manuscript on case-study simulations
- Current phase: analysis of hydrological year simulations
- Final phase: decadal historical and scenario simulations

Data will be made publically available after an initial publication for each phase

